Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(24): e2219404120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276413

ABSTRACT

Nogo-66 receptor 1 (NgR1) binds a variety of structurally dissimilar ligands in the adult central nervous system to inhibit axon extension. Disruption of ligand binding to NgR1 and subsequent signaling can improve neuron outgrowth, making NgR1 an important therapeutic target for diverse neurological conditions such as spinal crush injuries and Alzheimer's disease. Human NgR1 serves as a receptor for mammalian orthoreovirus (reovirus), but the mechanism of virus-receptor engagement is unknown. To elucidate how NgR1 mediates cell binding and entry of reovirus, we defined the affinity of interaction between virus and receptor, determined the structure of the virus-receptor complex, and identified residues in the receptor required for virus binding and infection. These studies revealed that central NgR1 surfaces form a bridge between two copies of viral capsid protein σ3, establishing that σ3 serves as a receptor ligand for reovirus. This unusual binding interface produces high-avidity interactions between virus and receptor to prime early entry steps. These studies refine models of reovirus cell-attachment and highlight the evolution of viruses to engage multiple receptors using distinct capsid components.


Subject(s)
Orthoreovirus , Reoviridae , Animals , Humans , Nogo Receptor 1/metabolism , Virus Attachment , Viral Proteins/metabolism , Ligands , Reoviridae/metabolism , Orthoreovirus/metabolism , Receptors, Virus/metabolism , Mammals/metabolism
2.
Proc Natl Acad Sci U S A ; 120(21): e2220741120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186838

ABSTRACT

Mammalian orthoreoviruses (reoviruses) serve as potential triggers of celiac disease and have oncolytic properties, making these viruses potential cancer therapeutics. Primary attachment of reovirus to host cells is mainly mediated by the trimeric viral protein, σ1, which engages cell-surface glycans, followed by high-affinity binding to junctional adhesion molecule-A (JAM-A). This multistep process is thought to be accompanied by major conformational changes in σ1, but direct evidence is lacking. By combining biophysical, molecular, and simulation approaches, we define how viral capsid protein mechanics influence virus-binding capacity and infectivity. Single-virus force spectroscopy experiments corroborated by in silico simulations show that GM2 increases the affinity of σ1 for JAM-A by providing a more stable contact interface. We demonstrate that conformational changes in σ1 that lead to an extended rigid conformation also significantly increase avidity for JAM-A. Although its associated lower flexibility impairs multivalent cell attachment, our findings suggest that diminished σ1 flexibility enhances infectivity, indicating that fine-tuning of σ1 conformational changes is required to successfully initiate infection. Understanding properties underlying the nanomechanics of viral attachment proteins offers perspectives in the development of antiviral drugs and improved oncolytic vectors.


Subject(s)
Orthoreovirus , Reoviridae , Animals , Capsid Proteins/chemistry , Reoviridae/metabolism , Orthoreovirus/metabolism , Viral Proteins/metabolism , Virus Attachment , Antibodies, Viral , Mammals/metabolism
3.
PLoS Pathog ; 19(1): e1011134, 2023 01.
Article in English | MEDLINE | ID: mdl-36706154

ABSTRACT

Autophagy plays an important role in virus infection of the host, because viral components and particles can be degraded by the host's autophagy and some viruses may be able to hijack and subvert autophagy for its benefit. However, details on the mechanisms that govern autophagy for immunity against viral infections or benefit viral survival remain largely unknown. Plant reoviruses such as southern rice black-streaked dwarf virus (SRBSDV), which seriously threaten crop yield, are only transmitted by vector insects. Here, we report a novel mechanism by which SRBSDV induces incomplete autophagy by blocking autophagosome-lysosome fusion, resulting in viral accumulation in gut epithelial cells of its vector, white-backed planthopper (Sogatella furcifera). SRBSDV infection leads to stimulation of the c-Jun N-terminal kinase (JNK) signaling pathway, which further activates autophagy. Mature and assembling virions were found close to the edge7 of the outer membrane of autophagosomes. Inhibition autophagy leads to the decrease of autophagosomes, which resulting in impaired maturation of virions and the decrease of virus titer, whereas activation of autophagy facilitated virus titer. Further, SRBSDV inhibited fusion of autophagosomes and lysosomes by interacting with lysosomal-associated membrane protein 1 (LAMP1) using viral P10. Thus, SRBSDV not only avoids being degrading by lysosomes, but also further hijacks these non-fusing autophagosomes for its subsistence. Our findings reveal a novel mechanism of reovirus persistence, which can explain why SRBSDV can be acquired and transmitted rapidly by its insect vector.


Subject(s)
Hemiptera , Orthoreovirus , Oryza , Reoviridae , Animals , Plant Diseases , Reoviridae/metabolism , Autophagy
4.
Cell ; 141(3): 472-82, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20398923

ABSTRACT

To achieve cell entry, many nonenveloped viruses must transform from a dormant to a primed state. In contrast to the membrane fusion mechanism of enveloped viruses (e.g., influenza virus), this membrane penetration mechanism is poorly understood. Here, using single-particle cryo-electron microscopy, we report a 3.3 A structure of the primed, infectious subvirion particle of aquareovirus. The density map reveals side-chain densities of all types of amino acids (except glycine), enabling construction of a full-atom model of the viral particle. Our structure and biochemical results show that priming involves autocleavage of the membrane penetration protein and suggest that Lys84 and Glu76 may facilitate this autocleavage in a nucleophilic attack. We observe a myristoyl group, covalently linked to the N terminus of the penetration protein and embedded in a hydrophobic pocket. These results suggest a well-orchestrated process of nonenveloped virus entry involving autocleavage of the penetration protein prior to exposure of its membrane-insertion finger.


Subject(s)
Reoviridae/metabolism , Reoviridae/ultrastructure , Virus Internalization , Capsid Proteins/metabolism , Cryoelectron Microscopy , Models, Molecular , Temperature
5.
J Virol ; 97(10): e0082823, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37747236

ABSTRACT

IMPORTANCE: Reoviruses infect many mammals and are widely studied as a model system for enteric viruses. However, most of our reovirus knowledge comes from laboratory strains maintained on immortalized L929 cells. Herein, we asked whether naturally circulating reoviruses possess the same genetic and phenotypic characteristics as laboratory strains. Naturally circulating reoviruses obtained from sewage were extremely diverse genetically. Moreover, sewage reoviruses exhibited poor fitness on L929 cells and relied heavily on gut proteases for viral uncoating and productive infection compared to laboratory strains. We then examined how naturally circulating reoviruses might adapt to cell culture conditions. Within three passages, virus isolates from the parental sewage population were selected, displaying improved fitness and intracellular uncoating in L929 cells. Remarkably, selected progeny clones were present at 0.01% of the parental population. Altogether, using reovirus as a model, our study demonstrates how the high genetic diversity of naturally circulating viruses results in rapid adaptation to new environments.


Subject(s)
Adaptation, Physiological , Genetic Fitness , Genome, Viral , Host Microbial Interactions , Peptide Hydrolases , Reoviridae , Virus Uncoating , Animals , Mice , Genome, Viral/genetics , Genomics , L Cells , Peptide Hydrolases/metabolism , Reoviridae/classification , Reoviridae/genetics , Reoviridae/metabolism , Serial Passage , Sewage/virology
6.
PLoS Pathog ; 18(3): e1010322, 2022 03.
Article in English | MEDLINE | ID: mdl-35263388

ABSTRACT

Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-Ɵ-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.


Subject(s)
Reoviridae Infections , Reoviridae , Animals , Cholesterol/metabolism , Endosomes/metabolism , Homeostasis , Humans , Mammals , Niemann-Pick C1 Protein/metabolism , Reoviridae/metabolism , Reoviridae Infections/metabolism
7.
PLoS Pathog ; 18(9): e1010641, 2022 09.
Article in English | MEDLINE | ID: mdl-36099325

ABSTRACT

Reoviridae virus family members, such as mammalian orthoreovirus (reovirus), encounter a unique challenge during replication. To hide the dsRNA from host recognition, the genome remains encapsidated in transcriptionally active proteinaceous core capsids that transcribe and release +RNA. De novo +RNAs and core proteins must repeatedly assemble into new progeny cores in order to logarithmically amplify replication. Reoviruses also produce outercapsid (OC) proteins Āµ1, σ3 and σ1 that assemble onto cores to create highly stable infectious full virions. Current models of reovirus replication position amplification of transcriptionally-active cores and assembly of infectious virions in shared factories, but we hypothesized that since assembly of OC proteins would halt core amplification, OC assembly is somehow regulated. Kinetic analysis of virus +RNA production, core versus OC protein expression, and core particles versus whole virus particle accumulation, indicated that assembly of OC proteins onto core particles was temporally delayed. All viral RNAs and proteins were made simultaneously, eliminating the possibility that delayed OC RNAs or proteins account for delayed OC assembly. High resolution fluorescence and electron microscopy revealed that core amplification occurred early during infection at peripheral core-only factories, while all OC proteins associated with lipid droplets (LDs) that coalesced near the nucleus in a Āµ1-dependent manner. Core-only factories transitioned towards the nucleus despite cycloheximide-mediated halting of new protein expression, while new core-only factories developed in the periphery. As infection progressed, OC assembly occurred at LD-and nuclear-proximal factories. Silencing of OC Āµ1 expression with siRNAs led to large factories that remained further from the nucleus, implicating Āµ1 in the transition to perinuclear factories. Moreover, late during infection, +RNA pools largely contributed to the production of de-novo viral proteins and fully-assembled infectious viruses. Altogether the results suggest an advanced model of reovirus replication with spatiotemporal segregation of core amplification, OC complexes and fully assembled virions.


Subject(s)
Reoviridae , Animals , Capsid Proteins/metabolism , Cell Line , Cycloheximide , Kinetics , Mammals , RNA, Viral/genetics , Reoviridae/genetics , Reoviridae/metabolism , Viral Proteins , Virus Assembly
8.
PLoS Pathog ; 18(5): e1010506, 2022 05.
Article in English | MEDLINE | ID: mdl-35533206

ABSTRACT

Viruses can hijack autophagosomes as the nonlytic release vehicles in cultured host cells. However, how autophagosome-mediated viral spread occurs in infected host tissues or organs in vivo remains poorly understood. Here, we report that an important rice reovirus, rice gall dwarf virus (RGDV) hijacks autophagosomes to traverse multiple insect membrane barriers in the midgut and salivary gland of leafhopper vector to enhance viral spread. Such virus-containing double-membraned autophagosomes are prevented from degradation, resulting in increased viral propagation. Mechanistically, viral nonstructural protein Pns11 induces autophagy and embeds itself in the autophagosome membranes. The autophagy-related protein 5 (ATG5)-ATG12 conjugation is essential for initial autophagosome membrane biogenesis. RGDV Pns11 specifically interacts with ATG5, both in vitro and in vivo. Silencing of ATG5 or Pns11 expression suppresses ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, Pns11 could directly recruit ATG5-ATG12 conjugation to induce the formation of autophagosomes, facilitating viral spread within the insect bodies. Furthermore, Pns11 potentially blocks autophagosome degradation by directly targeting and mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. Taken together, these results highlight how RGDV remodels autophagosomes to benefit viral propagation in its insect vector.


Subject(s)
Orthoreovirus , Oryza , Reoviridae , Animals , Autophagosomes/metabolism , Autophagy , Insect Vectors , Insecta/metabolism , Oryza/metabolism , Reoviridae/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
9.
Nucleic Acids Res ; 50(9): 5263-5281, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35489070

ABSTRACT

Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family presenting a promising activity as an oncolytic virus. Recent studies have underlined MRV's ability to alter cellular alternative splicing (AS) during infection, with a limited understanding of the mechanisms at play. In this study, we investigated how MRV modulates AS. Using a combination of cell biology and reverse genetics experiments, we demonstrated that the M1 gene segment, encoding the Āµ2 protein, is the primary determinant of MRV's ability to alter AS, and that the amino acid at position 208 in Āµ2 is critical to induce these changes. Moreover, we showed that the expression of Āµ2 by itself is sufficient to trigger AS changes, and its ability to enter the nucleus is not required for all these changes. Moreover, we identified core components of the U5 snRNP (i.e.Ā EFTUD2, PRPF8, and SNRNP200) as interactors of Āµ2 that are required for MRV modulation of AS. Finally, these U5 snRNP components are reduced at the protein level by both MRV infection and Āµ2 expression. Our findings identify the reduction of U5 snRNP components levels as a new mechanism by which viruses alter cellular AS.


Subject(s)
Reoviridae , Ribonucleoprotein, U5 Small Nuclear , Alternative Splicing/genetics , Animals , Mammals/metabolism , RNA Splicing , Reoviridae/genetics , Reoviridae/metabolism , Ribonucleoprotein, U5 Small Nuclear/metabolism , Spliceosomes/metabolism
10.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836586

ABSTRACT

Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.


Subject(s)
Capsid Proteins/metabolism , Chaperonin Containing TCP-1/metabolism , Molecular Chaperones/metabolism , Reoviridae/metabolism , Capsid Proteins/chemistry , Chaperonin Containing TCP-1/chemistry , Cryoelectron Microscopy , Mass Spectrometry , Molecular Chaperones/chemistry , Protein Conformation , Protein Folding , Proteostasis
11.
Cancer Immunol Immunother ; 72(11): 3593-3608, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37526659

ABSTRACT

Reovirus, a naturally occurring oncolytic virus, initiates the lysis of tumor cells while simultaneously releasing tumor antigens or proapoptotic cytokines in the tumor microenvironment to augment anticancer immunity. However, reovirus has developed a strategy to evade antiviral immunity via its inhibitory effect on interferon production, which negatively affects the induction of antitumor immune responses. The mammalian adaptor protein Stimulator of Interferon Genes (STING) was identified as a key regulator that orchestrates immune responses by sensing cytosolic DNA derived from pathogens or tumors, resulting in the production of type I interferon. Recent studies reported the role of STING in innate immune responses to RNA viruses leading to the restriction of RNA virus replication. In the current study, we found that reovirus had a reciprocal reaction with a STING agonist regarding type I interferon responses in vitro; however, we found that the combination of reovirus and STING agonist enhanced anti-tumor immunity by enhancing cytotoxic T cell trafficking into tumors, leading to significant tumor regression and survival benefit in a syngeneic colorectal cancer model. Our data indicate the combination of reovirus and a STING agonist to enhance inflammation in the tumor microenvironment might be a strategy to improve oncolytic reovirus immunotherapy.


Subject(s)
Colorectal Neoplasms , Interferon Type I , Reoviridae , Animals , Mice , Reoviridae/metabolism , Immunity, Innate , Cytokines , Interferon Type I/metabolism , Colorectal Neoplasms/therapy , Mammals/metabolism , Tumor Microenvironment
12.
J Virol ; 96(8): e0005522, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35353001

ABSTRACT

Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.


Subject(s)
Nogo Receptor 1 , Reoviridae , Animals , Junctional Adhesion Molecule A/metabolism , Mice , Mice, Inbred C57BL , Nogo Receptor 1/genetics , Nogo Receptor 1/metabolism , Reoviridae/metabolism , Reoviridae Infections/virology
13.
J Virol ; 96(8): e0033122, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35380459

ABSTRACT

The reovirus attachment protein σ1 mediates cell attachment and receptor binding and is thought to undergo conformational changes during viral disassembly. σ1 is a trimeric filamentous protein with an α-helical coiled-coil tail, a triple-Ɵ-spiral body, and a globular head. At the trimer interface, the head domain features an unusual and conserved aspartic acid cluster, which forms the only significant intratrimer interactions in the head and must be protonated to allow trimer formation. To define the role of pH on σ1 stability and conformation, we tested its domains over a wide range of pH values. We show that all domains of σ1 are remarkably thermostable, even at the low pH of the stomach. We determined the optimal pH for stability to be between pHs 5 and 6, a value close to the pH of the endosome and of the jejunum. The σ1 head is stable at acidic and neutral pH but detrimerizes at basic pH. When Asp345 in the aspartic acid cluster is mutated to asparagine (D345N), the σ1 head loses stability at low pH and is more prone to detrimerize. Although the D345N mutation does not affect σ1 binding affinity for the JAM-A receptor, the overall binding stoichiometry is reduced by one-third. The additional replacement of the neighboring His349 with alanine disrupts inner trimer surface interactions, leading to a less thermostable and monomeric σ1 D345N head that fails to bind the JAM-A receptor. When the body is expressed together with the head domain, the thermostability is restored and the stoichiometry of the binding to JAM-A receptor is preserved. Our results confirm a fundamental role of the aspartic acid cluster as a pH-dependent molecular switch controlling trimerization and enhancing thermostability of σ1, which represent essential requirements to accomplish reovirus infection and entry and might be common mechanisms among other enteric viruses. IMPORTANCE Enteric viruses withstand the highly acidic environment of the stomach during transmission, and many of them use low pH as a trigger for conformational changes associated with entry. For many nonenveloped viruses, the structural basis of these effects is not clear. We have investigated the stability of the reovirus attachment protein σ1 over a range of pHs and find it to be remarkably thermostable, especially at low pH. We identify a role for the aspartic acid cluster in maintaining σ1 thermostability, trimeric organization, and binding to JAM-A receptor especially at the gastric pH reovirus has to withstand while passing the stomach. The understanding of monomer-trimer dynamics within σ1 enhances our knowledge of reovirus entry and has implications for stability and transmission of other enteric viruses.


Subject(s)
Aspartic Acid , Reoviridae , Viral Nonstructural Proteins , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Humans , Hydrogen-Ion Concentration , Polymers/chemistry , Protein Stability , Reoviridae/genetics , Reoviridae/metabolism , Reoviridae Infections/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
14.
Subcell Biochem ; 99: 525-552, 2022.
Article in English | MEDLINE | ID: mdl-36151388

ABSTRACT

The members of the family Reoviridae (reoviruses) consist of 9-12 discrete double-stranded RNA (dsRNA) segments enclosed by single, double, or triple capsid layers. The outer capsid proteins of reoviruses exhibit the highest diversity in both sequence and structural organization. By contrast, the conserved RNA-dependent RNA polymerase (RdRp) structure in the conserved innermost shell in all reoviruses suggests that they share common transcriptional regulatory mechanisms. After reoviruses are delivered into the cytoplasm of a host cell, their inner capsid particles (ICPs) remain intact and serve as a stable nanoscale machine for RNA transcription and capping performed using enzymes in ICPs. Advances in cryo-electron microscopy have enabled the reconstruction at near-atomic resolution of not only the icosahedral capsid, including capping enzymes, but also the nonicosahedrally distributed complexes of RdRps within the capsid at different transcriptional stages. These near-atomic resolution structures allow us to visualize highly coordinated structural changes in the related enzymes, genomic RNA, and capsid protein during reovirus transcription. In addition, reoviruses encode their own enzymes for nascent RNA capping before RNA releasing from their ICPs.


Subject(s)
Reoviridae , Capsid/metabolism , Capsid Proteins/chemistry , Cryoelectron Microscopy , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Reoviridae/genetics , Reoviridae/metabolism
15.
PLoS Pathog ; 16(2): e1008380, 2020 02.
Article in English | MEDLINE | ID: mdl-32109948

ABSTRACT

Several barriers protect the central nervous system (CNS) from pathogen invasion. Yet viral infections of the CNS are common and often debilitating. Understanding how neurotropic viruses co-opt host machinery to overcome challenges to neuronal entry and transmission is important to combat these infections. Neurotropic reovirus disseminates through neural routes and invades the CNS to cause lethal encephalitis in newborn animals. To define mechanisms of reovirus neuronal entry and directional transport, we used primary neuron cultures, which reproduce in vivo infection patterns displayed by different reovirus serotypes. Treatment of neurons with small-molecule inhibitors of different endocytic uptake pathways allowed us to discover that the cellular machinery mediating macropinocytosis is required for reovirus neuronal entry. This mechanism of reovirus entry differs from clathrin-mediated endocytosis, which is used by reovirus to invade non-neuronal cells. Analysis of reovirus transport and release from isolated soma or axonal termini of neurons cultivated in microfluidic devices indicates that reovirus is capable of retrograde but only limited anterograde neuronal transmission. The dynamics of retrograde reovirus movement are consistent with fast axonal transport coordinated by dynein along microtubules. Further analysis of viral transport revealed that multiple virions are transported together in axons within non-acidified vesicles. Reovirus-containing vesicles acidify after reaching the soma, where disassembly of virions and release of the viral core into the cytoplasm initiates replication. These results define mechanisms of reovirus neuronal entry and transport and establish a foundation to identify common host factors used by neuroinvasive viruses. Furthermore, our findings emphasize consideration of cell type-specific entry mechanisms in the tailored design of neurotropic viruses as tracers, oncolytic agents, and delivery vectors.


Subject(s)
Axonal Transport/physiology , Reoviridae Infections/metabolism , Reoviridae/metabolism , Animals , Axons/virology , Cell Line , Central Nervous System , Cytoplasm/metabolism , Endocytosis , Male , Mice , Microtubules/metabolism , Neurons/metabolism , Neurons/virology , Pinocytosis/physiology , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Reoviridae/genetics , Virion/metabolism , Virus Internalization
16.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32907973

ABSTRACT

Mammalian reovirus (MRV) strain type 3 Dearing (T3D) is a naturally occurring oncolytic virus that has been developed as a potential cancer therapeutic. However, MRV treatment cannot be applied to cancer cells expressing low levels of junctional adhesion molecule A (JAM-A), which is the entry receptor of MRV. In this study, we developed a reverse genetics system for MRV strain T3D-L, which showed high oncolytic potency. To modify the cell tropism of MRV, an arginine-glycine-aspartic acid (RGD) peptide with an affinity to integrin was inserted at the C terminus or loop structures of the viral cell attachment protein σ1. The recombinant RGD σ1-modified viruses induced remarkable cell lysis in human cancer cell lines with marginal JAM-A expression and in JAM-A knockout cancer cell lines generated by a CRISPR/Cas9 system. Pretreatment of cells with anti-integrin antibody decreased cell death caused by the RGD σ1-modified virus, suggesting the infection to the cells was via a specific interaction with integrin αV. By using mouse models, we assessed virulence of the RGD σ1-modified viruses in vivo This system will open new avenues for the use of genetically modified oncolytic MRV for use as a cancer therapy.IMPORTANCE Oncolytic viruses kill tumors without affecting normal cells. A variety of oncolytic viruses are used as cancer therapeutics. Mammalian reovirus (MRV), which belongs to the genus Orthoreovirus, family Reoviridae, is one such natural oncolytic virus. The anticancer effects of MRV are being evaluated in clinical trials. Unlike other oncolytic viruses, MRV has not been genetically modified for use as a cancer therapeutic in clinical trials. Here, we used a reverse genetic approach to introduce an integrin-affinity peptide sequence into the MRV cell attachment protein σ1 to alter the natural tropism of the virus. The recombinant viruses were able to infect cancer cell lines expressing very low levels of the MRV entry receptor, junctional adhesion molecule A (JAM-A), and cause tumor cell death while maintaining its original tropism via JAM-A. This is a novel report of a genetically modified oncolytic MRV by introducing a peptide sequence into σ1.


Subject(s)
Junctional Adhesion Molecule A/genetics , Junctional Adhesion Molecule A/metabolism , Oligopeptides/metabolism , Reoviridae/genetics , Reoviridae/metabolism , Amino Acid Sequence , Animals , CRISPR-Cas Systems , Cell Adhesion Molecules , Cell Line, Tumor , Gene Knockout Techniques , Humans , Mammalian orthoreovirus 3/genetics , Mammalian orthoreovirus 3/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Nude , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Orthoreovirus/genetics , Orthoreovirus/metabolism , Receptors, Cell Surface , Virus Replication
17.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33087464

ABSTRACT

Engagement of cell surface receptors by viruses is a critical determinant of viral tropism and disease. The reovirus attachment protein σ1 binds sialylated glycans and proteinaceous receptors to mediate infection, but the specific requirements for different cell types are not entirely known. To identify host factors required for reovirus-induced cell death, we conducted a CRISPR-knockout screen targeting over 20,000 genes in murine microglial BV2 cells. Candidate genes required for reovirus to cause cell death were highly enriched for sialic acid synthesis and transport. Two of the top candidates identified, CMP N-acetylneuraminic acid synthetase (Cmas) and solute carrier family 35 member A1 (Slc35a1), promote sialic acid expression on the cell surface. Two reovirus strains that differ in the capacity to bind sialic acid, T3SA+ and T3SA-, were used to evaluate Cmas and Slc35a1 as potential host genes required for reovirus infection. Following CRISPR-Cas9 disruption of either gene, cell surface expression of sialic acid was diminished. These results correlated with decreased binding of strain T3SA+, which is capable of engaging sialic acid. Disruption of either gene did not alter the low-level binding of T3SA-, which does not engage sialic acid. Furthermore, infectivity of T3SA+ was diminished to levels similar to those of T3SA- in cells lacking Cmas and Slc35a1 by CRISPR ablation. However, exogenous expression of Cmas and Slc35a1 into the respective null cells restored sialic acid expression and T3SA+ binding and infectivity. These results demonstrate that Cmas and Slc35a1, which mediate cell surface expression of sialic acid, are required in murine microglial cells for efficient reovirus binding and infection.IMPORTANCE Attachment factors and receptors are important determinants of dissemination and tropism during reovirus-induced disease. In a CRISPR cell survival screen, we discovered two genes, Cmas and Slc35a1, which encode proteins required for sialic acid expression on the cell surface and mediate reovirus infection of microglial cells. This work elucidates host genes that render microglial cells susceptible to reovirus infection and expands current understanding of the receptors on microglial cells that are engaged by reovirus. Such knowledge may lead to new strategies to selectively target microglial cells for oncolytic applications.


Subject(s)
N-Acylneuraminate Cytidylyltransferase/metabolism , Nucleotide Transport Proteins/metabolism , Reoviridae Infections/virology , Reoviridae/physiology , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Cell Membrane/metabolism , Cell Survival , Mice , N-Acetylneuraminic Acid/metabolism , N-Acylneuraminate Cytidylyltransferase/genetics , Nucleotide Transport Proteins/genetics , Receptors, Virus/metabolism , Reoviridae/genetics , Reoviridae/metabolism , Reoviridae Infections/metabolism , Virus Attachment , Virus Replication
18.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32938765

ABSTRACT

Reovirus attachment protein σ1 is a trimeric molecule containing tail, body, and head domains. During infection, σ1 engages sialylated glycans and junctional adhesion molecule-A (JAM-A), triggering uptake into the endocytic compartment, where virions are proteolytically converted to infectious subvirion particles (ISVPs). Further disassembly allows σ1 release and escape of transcriptionally active reovirus cores into the cytosol. Electron microscopy has revealed a distinct conformational change in σ1 from a compact form on virions to an extended form on ISVPs. To determine the importance of σ1 conformational mobility, we used reverse genetics to introduce cysteine mutations that can cross-link σ1 by establishing disulfide bonds between structurally adjacent sites in the tail, body, and head domains. We detected phenotypic differences among the engineered viruses. A mutant with a cysteine pair in the head domain replicates with enhanced kinetics, forms large plaques, and displays increased avidity for JAM-A relative to the parental virus, mimicking properties of ISVPs. However, unlike ISVPs, particles containing cysteine mutations that cross-link the head domain uncoat and transcribe viral positive-sense RNA with kinetics similar to the parental virus and are sensitive to ammonium chloride, which blocks virion-to-ISVP conversion. Together, these data suggest that σ1 conformational flexibility modulates the efficiency of reovirus host cell attachment.IMPORTANCE Nonenveloped virus entry is an incompletely understood process. For reovirus, the functional significance of conformational rearrangements in the attachment protein, σ1, that occur during entry and particle uncoating are unknown. We engineered and characterized reoviruses containing cysteine mutations that cross-link σ1 monomers in nonreducing conditions. We found that the introduction of a cysteine pair in the receptor-binding domain of σ1 yielded a virus that replicates with faster kinetics than the parental virus and forms larger plaques. Using functional assays, we found that cross-linking the σ1 receptor-binding domain modulates reovirus attachment but not uncoating or transcription. These data suggest that σ1 conformational rearrangements mediate the efficiency of reovirus host cell binding.


Subject(s)
Reoviridae/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Attachment , Animals , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Adhesion Molecules/metabolism , Cell Line , L Cells , Mice , Mutation , Protein Binding , Protein Conformation , Receptors, Cell Surface/metabolism , Reoviridae/genetics , Viral Proteins/genetics , Virion/metabolism , Virus Internalization
19.
PLoS Pathog ; 15(1): e1007510, 2019 01.
Article in English | MEDLINE | ID: mdl-30653614

ABSTRACT

Numerous plant viruses that cause significant agricultural problems are persistently transmitted by insect vectors. We wanted to see if apoptosis was involved in viral infection process in the vector. We found that a plant reovirus (rice gall dwarf virus, RGDV) induced typical apoptotic response during viral replication in the leafhopper vector and cultured vector cells, as demonstrated by mitochondrial degeneration and membrane potential decrease. Fibrillar structures formed by nonstructural protein Pns11 of RGDV targeted the outer membrane of mitochondria, likely by interaction with an apoptosis-related mitochondrial protein in virus-infected leafhopper cells or nonvector insect cells. Such association of virus-induced fibrillar structures with mitochondria clearly led to mitochondrial degeneration and membrane potential decrease, suggesting that RGDV Pns11 was the inducer of apoptotic response in insect vectors. A caspase inhibitor treatment and knockdown of caspase gene expression using RNA interference each reduced apoptosis and viral accumulation, while the knockdown of gene expression for the inhibitor of apoptosis protein improved apoptosis and viral accumulation. Thus, RGDV exploited caspase-dependent apoptotic response to promote viral infection in insect vectors. For the first time, we directly confirmed that a nonstructural protein encoded by a persistent plant virus can induce the typical apoptotic response to benefit viral transmission by insect vectors.


Subject(s)
Apoptosis/physiology , Hemiptera/virology , Reoviridae/metabolism , Animals , Cell Line , Cells, Cultured , Fibrillar Collagens/metabolism , Insect Vectors/virology , Insecta/metabolism , Mitochondria/metabolism , Mitochondria/virology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/virology , Plant Viruses/metabolism , Reoviridae/genetics , Reoviridae/pathogenicity , Reoviridae/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication
20.
J Gen Virol ; 101(2): 145-155, 2020 02.
Article in English | MEDLINE | ID: mdl-31859614

ABSTRACT

Elevation of heat-shock protein expression, known as cellular heat-shock responses, occurs during infection of many viruses, which is involved in viral replication through various mechanisms. Herein, transcriptome analysis revealed that over-expression of non-structural protein NS31 of grass carp reovirus (GCRV) in grass carp Ctenopharyngodon idellus kidney (CIK) cells specifically induced expression of heat-shock response (HSR) genes HSP30 and HSP70. We further found that, among the HSR genes, only HSP70 protein were shown to be efficiently induced in fish cells following NS31 over-expression or GCRV infection. Employing a luciferase assay, we were able to show that the promoter of the HSP70 gene can be specifically activated by NS31. In addition, over-expressing HSP70 in grass carp CIK cells resulted in enhanced replication efficiency of GCRV, and an inhibitor for HSP70 resulted in the inhibition of GCRV replication, indicating that HSP70 should serve as a pro-viral factor. We also found that NS31 could activate HSP70 expression in cells of other vertebrate animals. Similar inducing effect on HSP70 expression was demonstrated for NS31-homologue proteins of other aquareoviruses including American grass carp reovirus (AGCRV) and GRCV (green river chinook virus). All these results indicated NS31 proteins in the Aquareovirus genus should play a key role for up-regulating specific HSP70 gene during viral replication.


Subject(s)
Fish Diseases/virology , Reoviridae Infections/veterinary , Reoviridae , Viral Nonstructural Proteins , Animals , Carps , Epithelial Cells/virology , Fish Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response , Kidney/cytology , Kidney/virology , Reoviridae/genetics , Reoviridae/metabolism , Reoviridae Infections/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL