Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 299(9): 105087, 2023 09.
Article in English | MEDLINE | ID: mdl-37495109

ABSTRACT

Mutations in the DNA helicase RECQL4 lead to Rothmund-Thomson syndrome (RTS), a disorder characterized by mitochondrial dysfunctions, premature aging, and genomic instability. However, the mechanisms by which these mutations lead to pathology are unclear. Here we report that RECQL4 is ubiquitylated by a mitochondrial E3 ligase, MITOL, at two lysine residues (K1101, K1154) via K6 linkage. This ubiquitylation hampers the interaction of RECQL4 with mitochondrial importer Tom20, thereby restricting its own entry into mitochondria. We show the RECQL4 2K mutant (where both K1101 and K1154 are mutated) has increased entry into mitochondria and demonstrates enhanced mitochondrial DNA (mtDNA) replication. We observed that the three tested RTS patient mutants were unable to enter the mitochondria and showed decreased mtDNA replication. Furthermore, we found that RECQL4 in RTS patient mutants are hyperubiquitylated by MITOL and form insoluble aggregate-like structures on the outer mitochondrial surface. However, depletion of MITOL allows RECQL4 expressed in these RTS mutants to enter mitochondria and rescue mtDNA replication. Finally, we show increased accumulation of hyperubiquitylated RECQL4 outside the mitochondria leads to the cells being potentiated to increased mitophagy. Hence, we conclude regulating the turnover of RECQL4 by MITOL may have a therapeutic effect in patients with RTS.


Subject(s)
Mitochondria , Mitophagy , RecQ Helicases , Ubiquitin-Protein Ligases , Humans , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Mitophagy/genetics , Mutation , RecQ Helicases/genetics , RecQ Helicases/metabolism , Rothmund-Thomson Syndrome/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , DNA Replication/genetics
2.
PLoS Genet ; 17(12): e1009971, 2021 12.
Article in English | MEDLINE | ID: mdl-34965247

ABSTRACT

Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.


Subject(s)
Electron Transport Complex I/genetics , Osteosarcoma/genetics , RNA, Long Noncoding/genetics , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/genetics , Adenosine Triphosphate/biosynthesis , Cell Proliferation/drug effects , Cell Respiration/drug effects , Cellular Senescence/genetics , Electron Transport Complex I/antagonists & inhibitors , Gene Expression Regulation, Developmental/genetics , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation/genetics , Osteoblasts/drug effects , Osteogenesis/genetics , Osteosarcoma/complications , Osteosarcoma/pathology , Oxadiazoles/pharmacology , Oxidative Phosphorylation/drug effects , Piperidines/pharmacology , Rothmund-Thomson Syndrome/complications , Rothmund-Thomson Syndrome/pathology
3.
Genet Med ; 25(7): 100836, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37013901

ABSTRACT

PURPOSE: Rothmund-Thomson syndrome (RTS) is characterized by poikiloderma, sparse hair, small stature, skeletal defects, cancer, and cataracts, resembling features of premature aging. RECQL4 and ANAPC1 are the 2 known disease genes associated with RTS in >70% of cases. We describe RTS-like features in 5 individuals with biallelic variants in CRIPT (OMIM 615789). METHODS: Two newly identified and 4 published individuals with CRIPT variants were systematically compared with those with RTS using clinical data, computational analysis of photographs, histologic analysis of skin, and cellular studies on fibroblasts. RESULTS: All CRIPT individuals fulfilled the diagnostic criteria for RTS and additionally had neurodevelopmental delay and seizures. Using computational gestalt analysis, CRIPT individuals showed greatest facial similarity with individuals with RTS. Skin biopsies revealed a high expression of senescence markers (p53/p16/p21) and the senescence-associated ß-galactosidase activity was elevated in CRIPT-deficient fibroblasts. RECQL4- and CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors and no or only mild sensitivity to genotoxic stress by ionizing radiation, mitomycin C, hydroxyurea, etoposide, and potassium bromate. CONCLUSION: CRIPT causes an RTS-like syndrome associated with neurodevelopmental delay and epilepsy. At the cellular level, RECQL4- and CRIPT-deficient cells display increased senescence, suggesting shared molecular mechanisms leading to the clinical phenotypes.


Subject(s)
Rothmund-Thomson Syndrome , Humans , Rothmund-Thomson Syndrome/genetics , Rothmund-Thomson Syndrome/diagnosis , Rothmund-Thomson Syndrome/pathology , Cellular Senescence/genetics , DNA Damage , Hydroxyurea/metabolism , Fibroblasts , Mutation , Adaptor Proteins, Signal Transducing/metabolism
4.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835439

ABSTRACT

Two adult siblings born to first-cousin parents presented a clinical phenotype reminiscent of Rothmund-Thomson syndrome (RTS), implying fragile hair, absent eyelashes/eyebrows, bilateral cataracts, mottled pigmentation, dental decay, hypogonadism, and osteoporosis. As the clinical suspicion was not supported by the sequencing of RECQL4, the RTS2-causative gene, whole exome sequencing was applied and disclosed the homozygous variants c.83G>A (p.Gly28Asp) and c.2624A>C (p.Glu875Ala) in the nucleoporin 98 (NUP98) gene. Though both variants affect highly conserved amino acids, the c.83G>A looked more intriguing due to its higher pathogenicity score and location of the replaced amino acid between phenylalanine-glycine (FG) repeats within the first NUP98 intrinsically disordered region. Molecular modeling studies of the mutated NUP98 FG domain evidenced a dispersion of the intramolecular cohesion elements and a more elongated conformational state compared to the wild type. This different dynamic behavior may affect the NUP98 functions as the minor plasticity of the mutated FG domain undermines its role as a multi-docking station for RNA and proteins, and the impaired folding can lead to the weakening or the loss of specific interactions. The clinical overlap of NUP98-mutated and RTS2/RTS1 patients, accounted by converging dysregulated gene networks, supports this first-described constitutional NUP98 disorder, expanding the well-known role of NUP98 in cancer.


Subject(s)
Germ-Line Mutation , Nuclear Pore Complex Proteins , Rothmund-Thomson Syndrome , Humans , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Rothmund-Thomson Syndrome/genetics , Siblings , Male , Female , Protein Conformation
5.
Am J Hum Genet ; 105(3): 625-630, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31303264

ABSTRACT

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Mutation , Rothmund-Thomson Syndrome/genetics , Humans
6.
PLoS Genet ; 15(7): e1008266, 2019 07.
Article in English | MEDLINE | ID: mdl-31276497

ABSTRACT

Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by skin rash (poikiloderma), skeletal dysplasia, small stature, juvenile cataracts, sparse or absent hair, and predisposition to specific malignancies such as osteosarcoma and hematological neoplasms. RTS is caused by germ-line mutations in RECQL4, a RecQ helicase family member. In vitro studies have identified functions for the ATP-dependent helicase of RECQL4. However, its specific role in vivo remains unclear. To determine the physiological requirement and the biological functions of Recql4 helicase activity, we generated mice with an ATP-binding-deficient knock-in mutation (Recql4K525A). Recql4K525A/K525A mice were strikingly normal in terms of embryonic development, body weight, hematopoiesis, B and T cell development, and physiological DNA damage repair. However, mice bearing two distinct truncating mutations Recql4G522Efs and Recql4R347*, that abolished not only the helicase but also the C-terminal domain, developed a profound bone marrow failure and decrease in survival similar to a Recql4 null allele. These results demonstrate that the ATP-dependent helicase activity of Recql4 is not essential for its physiological functions and that other domains might contribute to this phenotype. Future studies need to be performed to elucidate the complex interactions of RECQL4 domains and its contribution to the development of RTS.


Subject(s)
Adenosine Triphosphate/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Rothmund-Thomson Syndrome/genetics , Animals , B-Lymphocytes/metabolism , Binding Sites , Body Weight , DNA Damage , Disease Models, Animal , Embryonic Development , Gene Knock-In Techniques , Hematopoiesis , Humans , Mice , Phenotype , Protein Domains , RecQ Helicases/chemistry , T-Lymphocytes/metabolism
7.
Pediatr Int ; 64(1): e15120, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35616152

ABSTRACT

BACKGROUND: Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma of the face, small stature, sparse scalp hair, juvenile cataract, radial aplasia, and predisposition to cancers. Due to the rarity of RTS, the situation of patients with RTS in Japan has not been elucidated. METHODS: In 2010 and 2020, following the results of a primary questionnaire survey, a secondary questionnaire survey on RTS was conducted nationwide to investigate the number of RTS cases and their associated skin lesions, bone lesions, other clinical features, and quality of life in Japan. RESULTS: In 2010 and 2020, 10 and eight patients with RTS were recruited, respectively. Skin lesions such as poikiloderma, erythema, pigmentation, and abnormal scalp hair were observed in almost all cases. Bone lesions were observed in four cases in the 2010 and 2020 surveys, respectively. Two cases had mutations in the RECQL4 gene in the 2020 survey. CONCLUSIONS: Two nationwide surveys have shown the actual situation of patients with RTS in Japan. Cutaneous and bone manifestations are important for the diagnosis of RTS. However, many patients have no RECQL4 mutations. The novel causative gene of RTS should be further elucidated.


Subject(s)
Rothmund-Thomson Syndrome , Humans , Japan/epidemiology , Mutation , Quality of Life , Rothmund-Thomson Syndrome/diagnosis , Rothmund-Thomson Syndrome/epidemiology , Rothmund-Thomson Syndrome/genetics , Surveys and Questionnaires
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(1): 31-34, 2022 Jan 10.
Article in Zh | MEDLINE | ID: mdl-34964962

ABSTRACT

OBJECTIVE: To explore the genetic basis for a child with Rothmund-Thomson syndrome (RTS). METHODS: The child has featured poikeloderma, short stature, cataract, sparse hair and skeletal malformation. Peripheral blood samples of the child and her family members were collected and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. RESULTS: The child was found to harbor compound heterozygous variants of the RECQL4 gene, namely c.1048_1049delAG and c.2886-1G>A, among which c.2886-1G>A was unreported previously. According to the ACMG guidelines, the c.1048_1049delAG was predicted to be pathogenic (PVS1+PM3_Strong+PM2), while the c.2886-1G>A was predicted to be likely pathogenic (PVS1+PM2). CONCLUSION: The compound heterozygous variants of the RECQL4 gene probably underlay the pathogenesis of RTS in this patient. Above finding has enriched the mutational spectrum of the RECQL4 gene.


Subject(s)
Rothmund-Thomson Syndrome , Child , Family , Female , Humans , Mutation , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/genetics , Exome Sequencing
9.
Cytogenet Genome Res ; 161(6-7): 305-327, 2021.
Article in English | MEDLINE | ID: mdl-34474412

ABSTRACT

Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.


Subject(s)
Bloom Syndrome/genetics , Genetic Predisposition to Disease/genetics , Mutation , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/genetics , Werner Syndrome/genetics , Humans , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , RecQ Helicases/antagonists & inhibitors , RecQ Helicases/metabolism , Risk Factors
10.
Adv Exp Med Biol ; 1258: 37-54, 2020.
Article in English | MEDLINE | ID: mdl-32767233

ABSTRACT

The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them - BLM, WRN, and RECQL4 - are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The "tumor suppressor" function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.


Subject(s)
Bone Neoplasms/enzymology , Osteosarcoma/enzymology , RecQ Helicases/metabolism , Animals , Bone Neoplasms/genetics , Genomic Instability , Humans , Osteosarcoma/genetics , Rothmund-Thomson Syndrome/enzymology , Rothmund-Thomson Syndrome/genetics
11.
Genes Dev ; 26(17): 1911-25, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22899009

ABSTRACT

C16orf57 encodes a human protein of unknown function, and mutations in the gene occur in poikiloderma with neutropenia (PN), which is a rare, autosomal recessive disease. Interestingly, mutations in C16orf57 were also observed among patients diagnosed with Rothmund-Thomson syndrome (RTS) and dyskeratosis congenita (DC), which are caused by mutations in genes involved in DNA repair and telomere maintenance. A genetic screen in Saccharomyces cerevisiae revealed that the yeast ortholog of C16orf57, USB1 (YLR132C), is essential for U6 small nuclear RNA (snRNA) biogenesis and cell viability. Usb1 depletion destabilized U6 snRNA, leading to splicing defects and cell growth defects, which was suppressed by the presence of multiple copies of the U6 snRNA gene SNR6. Moreover, Usb1 is essential for the generation of a unique feature of U6 snRNA; namely, the 3'-terminal phosphate. RNAi experiments in human cells followed by biochemical and functional analyses confirmed that, similar to yeast, C16orf57 encodes a protein involved in the 2',3'-cyclic phosphate formation at the 3' end of U6 snRNA. Advanced bioinformatics predicted that C16orf57 encodes a phosphodiesterase whose putative catalytic activity is essential for its function in vivo. Our results predict an unexpected molecular basis for PN, DC, and RTS and provide insight into U6 snRNA 3' end formation.


Subject(s)
Mutation , Neutropenia/genetics , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , RNA 3' End Processing/genetics , RNA, Small Nuclear/metabolism , Rothmund-Thomson Syndrome/genetics , HEK293 Cells , HeLa Cells , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Neutropenia/enzymology , Phosphoric Diester Hydrolases/chemistry , Protein Structure, Tertiary , RNA Interference , RNA Stability/genetics , Rothmund-Thomson Syndrome/enzymology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Biochem Biophys Res Commun ; 509(2): 379-383, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30594395

ABSTRACT

RecQL4 has been shown to be involved in DNA replication and repair, but its role in DNA damage checkpoint pathway has not been reported. Here, we show that RecQL4 plays an important role in the activation of ataxia telangiectasia mutated (ATM)-dependent checkpoint pathway in human cells. Cells depleted with RecQL4 or Rothmund-Thomson syndrome cells showed significant impairment in the activation of ATM and the downstream effector proteins such as checkpoint kinase 2 and p53 after DNA damage. This defect was recovered with the expression of wild type RecQL4 but not any mutant RecQL4 proteins with defective helicase activities. While RecQL4 failed to show any direct interaction with ATM, it stably interacted with the Mre11-Rad50-Nbs1 complex that is essential for the activation of ATM and was localized on the DNA damage foci. Thus, our results suggest that the helicase activity of RecQL4 plays an important role in the activation of ATM-dependent checkpoint pathway against DNA double strand breaks in human cells.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Repair , DNA/genetics , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/genetics , Acid Anhydride Hydrolases , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Genetic Complementation Test , Humans , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Protein Binding , RecQ Helicases/deficiency , Rothmund-Thomson Syndrome/metabolism , Rothmund-Thomson Syndrome/pathology , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
J Cell Sci ; 129(7): 1312-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26906415

ABSTRACT

Germline mutations in RECQL4 helicase are associated with Rothmund-Thomson syndrome, which is characterized by a predisposition to cancer. RECQL4 localizes to the mitochondria, where it acts as an accessory factor during mitochondrial DNA replication. To understand the specific mitochondrial functions of RECQL4, we created isogenic cell lines, in which the mitochondrial localization of the helicase was either retained or abolished. The mitochondrial integrity was affected due to the absence of RECQL4 in mitochondria, leading to a decrease in F1F0-ATP synthase activity. In cells where RECQL4 does not localize to mitochondria, the membrane potential was decreased, whereas ROS levels increased due to the presence of high levels of catalytically inactive SOD2. Inactive SOD2 accumulated owing to diminished SIRT3 activity. Lack of the mitochondrial functions of RECQL4 led to aerobic glycolysis that, in turn, led to an increased invasive capability within these cells. Together, this study demonstrates for the first time that, owing to its mitochondrial functions, the accessory mitochondrial replication helicase RECQL4 prevents the invasive step in the neoplastic transformation process.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Glucose/metabolism , Glycolysis/physiology , Mitochondria/metabolism , RecQ Helicases/metabolism , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism , Cell Line , DNA Replication/genetics , DNA, Mitochondrial/genetics , HCT116 Cells , Humans , Membrane Potential, Mitochondrial/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , Reactive Oxygen Species/metabolism , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/genetics
14.
Int J Mol Sci ; 19(4)2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29642415

ABSTRACT

Biallelic mutations in RECQL4 gene, a caretaker of the genome, cause Rothmund-Thomson type-II syndrome (RTS-II) and confer increased cancer risk if they damage the helicase domain. We describe five families exemplifying clinical and allelic heterogeneity of RTS-II, and report the effect of pathogenic RECQL4 variants by in silico predictions and transcripts analyses. Complete phenotype of patients #39 and #42 whose affected siblings developed osteosarcoma correlates with their c.[1048_1049del], c.[1878+32_1878+55del] and c.[1568G>C;1573delT], c.[3021_3022del] variants which damage the helicase domain. Literature survey highlights enrichment of these variants affecting the helicase domain in patients with cancer outcome raising the issue of strict oncological surveillance. Conversely, patients #29 and #19 have a mild phenotype and carry, respectively, the unreported homozygous c.3265G>T and c.3054A>G variants, both sparing the helicase domain. Finally, despite matching several criteria for RTS clinical diagnosis, patient #38 is heterozygous for c.2412_2414del; no pathogenic CNVs out of those evidenced by high-resolution CGH-array, emerged as contributors to her phenotype.


Subject(s)
Mutation , Phenotype , Rothmund-Thomson Syndrome/genetics , Adolescent , Adult , Cell Line, Tumor , Child , Female , Homozygote , Humans , Male , Pedigree , RecQ Helicases/genetics , RecQ Helicases/metabolism , Rothmund-Thomson Syndrome/pathology
15.
Am J Hum Genet ; 93(6): 1100-7, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24268661

ABSTRACT

Congenital poikiloderma is characterized by a combination of mottled pigmentation, telangiectasia, and epidermal atrophy in the first few months of life. We have previously described a South African European-descent family affected by a rare autosomal-dominant form of hereditary fibrosing poikiloderma accompanied by tendon contracture, myopathy, and pulmonary fibrosis. Here, we report the identification of causative mutations in FAM111B by whole-exome sequencing. In total, three FAM111B missense mutations were identified in five kindreds of different ethnic backgrounds. The mutation segregated with the disease in one large pedigree, and mutations were de novo in two other pedigrees. All three mutations were absent from public databases and were not observed on Sanger sequencing of 388 ethnically matched control subjects. The three single-nucleotide mutations code for amino acid changes that are clustered within a putative trypsin-like cysteine/serine peptidase domain of FAM111B. These findings provide evidence of the involvement of FAM111B in congenital poikiloderma and multisystem fibrosis.


Subject(s)
Cell Cycle Proteins/genetics , Contracture/physiopathology , Muscular Diseases/complications , Mutation , Pulmonary Fibrosis/complications , Rothmund-Thomson Syndrome/complications , Rothmund-Thomson Syndrome/genetics , Tendons/physiopathology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Rothmund-Thomson Syndrome/diagnosis , Young Adult
16.
J Am Acad Dermatol ; 75(5): 855-870, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27745641

ABSTRACT

Hereditary photodermatoses are a spectrum of rare photosensitive disorders that are often caused by genetic deficiency or malfunction of various components of the DNA repair pathway. This results clinically in extreme photosensitivity, with many syndromes exhibiting an increased risk of cutaneous malignancies. This review will focus specifically on the syndromes with malignant potential, including xeroderma pigmentosum, Bloom syndrome, and Rothmund-Thomson syndrome. The typical phenotypic findings of each disorder will be examined and contrasted, including noncutaneous identifiers to aid in diagnosis. The management of these patients will also be discussed. At this time, the mainstay of therapy remains strict photoprotection; however, genetic therapies are under investigation.


Subject(s)
DNA Repair-Deficiency Disorders/genetics , Neoplastic Syndromes, Hereditary/genetics , Photosensitivity Disorders/genetics , Skin Neoplasms/genetics , Bloom Syndrome/enzymology , Bloom Syndrome/epidemiology , Bloom Syndrome/genetics , Bloom Syndrome/therapy , DNA Repair , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/genetics , DNA Repair-Deficiency Disorders/epidemiology , Genes, Recessive , Genetic Predisposition to Disease , Humans , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/genetics , Neoplastic Syndromes, Hereditary/epidemiology , Phenotype , Proliferating Cell Nuclear Antigen/genetics , Rothmund-Thomson Syndrome/enzymology , Rothmund-Thomson Syndrome/epidemiology , Rothmund-Thomson Syndrome/genetics , Rothmund-Thomson Syndrome/therapy , Skin Neoplasms/etiology , Sunlight/adverse effects , Ultraviolet Rays/adverse effects , Xeroderma Pigmentosum/enzymology , Xeroderma Pigmentosum/epidemiology , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/therapy
17.
Trends Genet ; 28(12): 624-31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22940096

ABSTRACT

Helicases are ubiquitous proteins that unwind DNA and participate in DNA metabolism including replication, repair, transcription, and chromatin organization. The highly conserved RecQ helicase family proteins are important in these transactions and have been termed the guardians of the genome. Humans have five members of this family: WRN, BLM, RECQL4, RECQL1, and RECQL5. The first three of are associated with premature aging and cancer prone syndromes, but the latter two proteins have not yet been implicated in any human disease. Although WRN and BLM have been fairly well characterized, RECQL4 has only recently been intensively investigated. The sum of this work to date has shown that RECQL4 has helicase activity and localizes to telomeres and mitochondria. In addition, new protein partners are emerging, implicating RECQL4 in novel processes. Here, we describe these recent findings which place RECQL4 at the crossroads of genomic instability and aging processes.


Subject(s)
Aging/genetics , Genomic Instability , RecQ Helicases/genetics , RecQ Helicases/metabolism , Animals , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , RecQ Helicases/chemistry , Rothmund-Thomson Syndrome/genetics , Telomere/genetics , Telomere/metabolism
18.
Carcinogenesis ; 35(11): 2415-24, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24942867

ABSTRACT

RECQL4, a member of the RecQ helicase family, is a multifunctional participant in DNA metabolism. RECQL4 protein participates in several functions both in the nucleus and in the cytoplasm of the cell, and mutations in human RECQL4 are associated with three genetic disorders: Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. We previously reported that RECQL4 is recruited to laser-induced DNA double-strand breaks (DSB). Here, we have characterized the functional roles of RECQL4 in the non-homologous end joining (NHEJ) pathway of DSB repair. In an in vitro NHEJ assay that depends on the activity of DNA-dependent protein kinase (DNA-PK), extracts from RECQL4 knockdown cells display reduced end-joining activity on DNA substrates with cohesive and non-cohesive ends. Depletion of RECQL4 also reduced the end joining activity on a GFP reporter plasmid in vivo. Knockdown of RECQL4 increased the sensitivity of cells to γ-irradiation and resulted in accumulation of 53BP1 foci after irradiation, indicating defects in the processing of DSB. We find that RECQL4 interacts with the Ku70/Ku80 heterodimer, part of the DNA-PK complex, via its N-terminal domain. Further, RECQL4 stimulates higher order DNA binding of Ku70/Ku80 to a blunt end DNA substrate. Taken together, these results implicate that RECQL4 participates in the NHEJ pathway of DSB repair via a functional interaction with the Ku70/Ku80 complex. This is the first study to provide both in vitro and in vivo evidence for a role of a RecQ helicase in NHEJ.


Subject(s)
Antigens, Nuclear/genetics , DNA End-Joining Repair/genetics , DNA-Binding Proteins/genetics , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/genetics , DNA Breaks, Double-Stranded/radiation effects , DNA-Activated Protein Kinase/genetics , Gamma Rays , Gene Knockdown Techniques , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Ku Autoantigen , Radiation Tolerance/genetics , RecQ Helicases/antagonists & inhibitors , Rothmund-Thomson Syndrome/pathology , Tumor Suppressor p53-Binding Protein 1
19.
Carcinogenesis ; 35(1): 34-45, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24067899

ABSTRACT

UNLABELLED: Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (PolγA/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of PolγA. Kinetic constants for interactions between PolγA-RECQL4, PolγA-p53 and PolγB-p53 indicate that RECQL4 and p53 are accessory factors for PolγA-PolγB and PolγA-DNA interactions. RECQL4 enhances the binding of PolγA to DNA, thereby potentiating the exonuclease and polymerization activities of PolγA/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. SUMMARY: The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Genome, Mitochondrial/physiology , Li-Fraumeni Syndrome/genetics , RecQ Helicases/metabolism , Rothmund-Thomson Syndrome/genetics , Tumor Suppressor Protein p53/metabolism , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , DNA Polymerase gamma , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/genetics , Fibroblasts , Genome, Human , Genomic Instability , Humans , Mutation , Polymorphism, Genetic , RecQ Helicases/genetics , Tumor Suppressor Protein p53/genetics
20.
J Cell Sci ; 125(Pt 10): 2509-22, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22357944

ABSTRACT

Mutations in RECQL4 helicase are associated with Rothmund-Thomson syndrome (RTS). A subset of RTS patients is predisposed to cancer and is sensitive to DNA damaging agents. The enhanced sensitivity of cells from RTS patients correlates with the accumulation of transcriptionally active nuclear p53. We found that in untreated normal human cells these two nuclear proteins, p53 and RECQL4, instead colocalize in the mitochondrial nucleoids. RECQL4 accumulates in mitochondria in all phases of the cell cycle except S phase and physically interacts with p53 only in the absence of DNA damage. p53-RECQL4 binding leads to the masking of the nuclear localization signal of p53. The N-terminal 84 amino acids of RECQL4 contain a mitochondrial localization signal, which causes the localization of RECQL4-p53 complex to the mitochondria. RECQL4-p53 interaction is disrupted after stress, allowing p53 translocation to the nucleus. In untreated normal cells RECQL4 optimizes de novo replication of mtDNA, which is consequently decreased in fibroblasts from RTS patients. Wild-type RECQL4-complemented RTS cells show relocalization of both RECQL4 and p53 to the mitochondria, loss of p53 activation, restoration of de novo mtDNA replication and resistance to different types of DNA damage. In cells expressing Δ84 RECQL4, which cannot translocate to mitochondria, all the above functions are compromised. The recruitment of p53 to the sites of de novo mtDNA replication is also regulated by RECQL4. Thus these findings elucidate the mechanism by which p53 is regulated by RECQL4 in unstressed normal cells and also delineates the mitochondrial functions of the helicase.


Subject(s)
Mitochondria/metabolism , RecQ Helicases/metabolism , Rothmund-Thomson Syndrome/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line , DNA Helicases/analysis , Humans , Mitochondria/enzymology , Protein Transport , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/enzymology , Rothmund-Thomson Syndrome/genetics , Stress, Physiological , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL