ABSTRACT
BACKGROUND: Reaction threshold and severity in food allergy are difficult to predict, and noninvasive predictors are lacking. OBJECTIVE: We sought to determine the relationships between pre-challenge levels of peanut (PN)-specific antibodies in saliva and reaction threshold, severity, and organ-specific symptoms during PN allergic reactions. METHODS: We measured PN-specific antibody levels in saliva collected from 127 children with suspected PN allergy before double-blind, placebo-controlled PN challenges in which reaction threshold, severity, and symptoms were rigorously characterized. Low threshold (LT) PN allergy was defined as reaction to <300 mg of PN protein cumulatively consumed. A consensus severity grading system was used to grade severity. We analyzed associations between antibody levels and reaction threshold, severity, and organ-specific symptoms. RESULTS: Among the 127 children, those with high pre-challenge saliva PN IgE had higher odds of LT PN allergy (odds ratio [OR] 3.9, 95% CI 1.6-9.5), while those with high saliva PN IgA:PN IgE ratio or PN IgG4:PN IgE ratio had lower odds of LT PN allergy (OR 0.3, 95% CI 0.1-0.8; OR 0.4, 95% CI 0.2-0.9). Children with high pre-challenge saliva PN IgG4 had lower odds of severe PN reactions (OR 0.4, 95% CI 0.2-0.9). Children with high saliva PN IgE had higher odds of respiratory symptoms (OR 8.0, 95% CI 2.2-26.8). Saliva PN IgE modestly correlated with serum PN IgE levels (Pearson r = 0.31, P = .0004). High and low saliva PN IgE levels further distinguished reaction threshold and severity in participants stratified by serum PN IgE, suggesting endotypes. CONCLUSIONS: Saliva PN antibodies could aid in noninvasive risk stratification of PN allergy threshold, severity, and organ-specific symptoms.
Subject(s)
Immunoglobulin E , Peanut Hypersensitivity , Saliva , Severity of Illness Index , Humans , Peanut Hypersensitivity/immunology , Saliva/immunology , Female , Male , Immunoglobulin E/immunology , Immunoglobulin E/blood , Child , Child, Preschool , Allergens/immunology , Arachis/immunology , Immunoglobulin A/immunology , Double-Blind Method , Immunoglobulin G/immunology , Immunoglobulin G/blood , AdolescentABSTRACT
The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.
Subject(s)
Leukocyte L1 Antigen Complex , Manganese , Streptococcal Infections , Streptococcus pyogenes , Manganese/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , Streptococcal Infections/metabolism , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/immunology , Animals , Humans , Mice , Leukocyte L1 Antigen Complex/metabolism , Virulence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Host-Pathogen Interactions/immunology , Saliva/microbiology , Saliva/immunology , Disease Models, AnimalABSTRACT
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Subject(s)
Herbivory , Insecta , Plant Immunity , Animals , Insecta/physiology , Plants/immunology , Plants/metabolism , Saliva/immunology , Saliva/metabolism , Plant Defense Against HerbivoryABSTRACT
BACKGROUND: Recurrent respiratory tract infections (rRTIs) are a common reason for immunodiagnostic testing in children, which relies on serum antibody level measurements. However, because RTIs predominantly affect the respiratory mucosa, serum antibodies may inaccurately reflect local immune defences. We investigated antibody responses in saliva and their interplay with the respiratory microbiota in relation to RTI severity and burden in young children with rRTIs. METHODS: We conducted a prospective cohort study including 100 children aged <10â years with rRTIs, their family members and healthy healthcare professionals. Total and polyreactive antibody concentrations were determined in serum and saliva (ELISA); respiratory microbiota composition (16S rRNA sequencing) and respiratory viruses (quantitative PCR) were characterised in nasopharyngeal swabs. Proteomic analysis (Olink) was performed on saliva and serum samples. RTI symptoms were monitored with a daily mobile phone application and assessed using latent class analysis and negative binomial mixed models. RESULTS: Serum antibody levels were not associated with RTI severity. Strikingly, 28% of salivary antibodies and only 2% of serum antibodies displayed polyreactivity (p<0.001). Salivary polyreactive IgA was negatively associated with recurrent lower RTIs (adjusted OR 0.80, 95% CI 0.67-0.94) and detection of multiple respiratory viruses (adjusted OR 0.76, 95% CI 0.61-0.96). Haemophilus influenzae abundance was positively associated with RTI symptom burden (regression coefficient 0.05, 95% CI 0.02-0.08). CONCLUSION: These results highlight the importance of mucosal immunity in RTI severity and burden, and suggest that the level of salivary polyreactive IgA and H. influenzae abundance may serve as indicators of infection severity and burden in young children with rRTIs.
Subject(s)
Haemophilus influenzae , Recurrence , Respiratory Tract Infections , Saliva , Humans , Male , Female , Haemophilus influenzae/immunology , Prospective Studies , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/diagnosis , Child, Preschool , Saliva/immunology , Infant , Child , Severity of Illness Index , Antibodies, Bacterial/blood , Haemophilus Infections/immunology , Haemophilus Infections/diagnosis , Antibodies, Viral/blood , Immunoglobulin A/blood , RNA, Ribosomal, 16S/geneticsABSTRACT
Situational factors can increase people's vulnerability to intergroup bias, including prejudicial attitudes, negative stereotyping, and discrimination. We proposed that increases in inflammatory activity that coincide with acute illness may represent a hitherto unstudied situational factor that increases intergroup bias. The current study experimentally manipulated increases in inflammatory activity by administering the seasonal influenza vaccine or a saline placebo. We quantified inflammatory activity by assessing change in salivary pro-inflammatory cytokines and assessed intergroup bias using a resume evaluation task and self-reported ethnocentrism. Primary analyses focused on a subsample of 117 participants who provided high quality data; robustness analyses included various permutations of lower quality participants. Findings revealed that changes in the cytokine interleukin-1ß (IL-1ß) in response to the vaccine were associated with greater intergroup bias. Among participants who received the vaccine, IL-1ß change was negatively associated with evaluation of a Latina (but not a White woman) applicant's competency and recommended starting salary. Moreover, IL-1ß change was positively associated with ethnocentrism. Overall, results provide support for the hypothesis that acute illness, via the mechanistic role of inflammatory cytokines, affects social cognition in ways that can increase intergroup bias.
Subject(s)
Cytokines , Hispanic or Latino , Influenza Vaccines , Interleukin-1beta , Humans , Female , Influenza Vaccines/immunology , Male , Adult , Hispanic or Latino/psychology , Cytokines/metabolism , Interleukin-1beta/metabolism , Young Adult , Saliva/immunology , Saliva/chemistry , Job Application , PrejudiceABSTRACT
The impact of psychological stress on physiological systems has been a focus of extensive research, particularly in understanding its diverse effects on immune system activity and disease risk. This meta-analysis explores the dynamic effect of acute stress on salivary immunoglobulin-A (S-IgA) levels, a key biomarker for secretory immunity within the oral environment. Analyzing data from 34 samples comprising 87 effect sizes and a total of 1,025 subjects, a multi-level approach is employed to account for the temporal variability in measuring the stress response. The results reveal a significant increase in S-IgA levels peaking around 10 min after stress exposure, followed by a return to baseline levels approximately 30 min later. In addition, the meta-analysis identified several research gaps of the extant literature, such as limitations in the considered time lag after stress. In conclusion, the findings emphasize the temporal nuances of the S-IgA response to stress, which can help to infer potential biological pathways and guide sampling designs in future studies. Further, we highlight the use of a multi-level meta-analysis approach to investigate the temporal dependencies of the interplay between stress and immune functioning.
Subject(s)
Saliva , Stress, Psychological , Humans , Saliva/immunology , Saliva/chemistry , Saliva/metabolism , Stress, Psychological/immunology , Stress, Psychological/metabolism , Immunoglobulin A/metabolism , Time Factors , Immunoglobulin A, Secretory/metabolism , Biomarkers/metabolism , Female , Male , AdultABSTRACT
Mucosal immunity is a multifaceted system of immunological responses that provides a barrier against pathogenic invasion and can be regulated by psychosocial and neuroendocrine factors. The present study aims to elucidate the association between everyday emotional states, emotion regulation skills, and mucosal immunity by utilizing an ambulatory assessment approach. 30 healthy subjects (61% male; M = 30.18 years old) completed an emotion questionnaire (PANAS) and collected saliva samples via passive drool to determine salivary immunoglobulin-A (S-IgA) excretion rate three times a day over a period of 1 week. In a multi-level model, the influence of emotions on S-IgA, both on a within-subject and between-subject level, was estimated. We found that most of the variation in S-IgA (74%) was accounted for by within-subject changes rather than stable between-subject differences. On a within-subject level, negative emotions had a significant positive effect on S-IgA levels (b = 1.87, p = .015), while positive emotions had no effect. This effect of negative emotions was moderated by the individual emotion regulation skills, with higher regulation skills corresponding to smaller effects (b = -2.67, p = .046). Furthermore, S-IgA levels decreased over the course of a day, indicating circadian rhythmicity (b = -0.13, p = .034). These results highlight the possibilities of intensive longitudinal data to investigate the covariance between psychological and immunological states over time.
Subject(s)
Emotions , Immunity, Mucosal , Saliva , Humans , Male , Female , Adult , Saliva/immunology , Saliva/chemistry , Emotions/physiology , Young Adult , Emotional Regulation/physiology , Longitudinal Studies , Immunoglobulin A, Secretory/immunology , Immunoglobulin AABSTRACT
On 19 January 2020, the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was identified in the United States, with the first cases in South Carolina confirmed on 06 March 2020. Due to initial limited testing capabilities and potential for asymptomatic transmission, it is possible that SARS-CoV-2 may have been present earlier than previously thought, while the immune status of at-risk populations was unknown. Saliva from 55 South Carolina emergency healthcare workers (EHCWs) was collected from September 2019 to March 2020, pre- and post-healthcare shifts, and stored frozen. To determine the presence of SARS-CoV-2-reactive antibodies, saliva-acquired post-shift was analysed by enzyme-linked immunosorbent assay (ELISA) with a repeat of positive or inconclusive results and follow-up testing of pre-shift samples. Two participants were positive for SARS-CoV-2 N/S1-reactive IgG, confirmed by follow-up testing, with S1 receptor binding domain (RBD)-specific IgG present in one individual. Positive samples were collected from medical students working in emergency medical services (EMSs) in October or November 2019. The presence of detectable anti-SARS-CoV-2 antibodies in 2019 suggests that immune responses to the virus existed in South Carolina, and the United States, in a small percentage of EHCWs prior to the earliest documented coronavirus disease 2019 (COVID-19) cases. These findings suggest the feasibility of saliva as a noninvasive tool for surveillance of emerging outbreaks, and EHCWs represent a high-risk population that should be the focus of infectious disease surveillance.
Subject(s)
Antibodies, Viral , COVID-19 , Health Personnel , SARS-CoV-2 , Saliva , Humans , South Carolina/epidemiology , Saliva/virology , Saliva/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/epidemiology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Adult , Male , Antibodies, Viral/analysis , Female , Middle Aged , Young Adult , Enzyme-Linked Immunosorbent AssayABSTRACT
Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.
Subject(s)
Aging/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Nursing Homes , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccine Efficacy , Young AdultABSTRACT
BACKGROUND: Although important information concerning COVID-19 vaccination is available, the effects of the CoronaVac and ChadOx-1 vaccines on immunity and the redox balance in the upper airway mucosa of the aged population are not fully understood. Therefore, the aim of this study was to investigate the impacts of two doses of the CoronaVac or ChadOx-1 vaccine on immune/inflammatory responses and oxidative stress in the airway mucosa of older adults. METHODS: Seventy-six older adults of both sexes, with a mean age of 75.1 ± 6.4 years, were separated according to vaccination status into the CoronaVac (n = 52) and ChadOx-1 (n = 24) groups. Saliva samples were collected before (pre) and 30 days after (post) the administration of the second dose of the CoronaVac or ChadOx-1 vaccine to assess the levels of antibodies (sIgA and IgG), antimicrobial peptides, cytokines, and oxidant/antioxidant agents. RESULTS: The immunogenicity in the ChadOx-1 group was 37.5% for sIgA and 25% for IgG, while that in the CoronaVac group was 18.9% for sIgA and 13.2% for IgG. Intergroup analysis revealed that (1) lower levels of IFN-α, IFN-γ, and IL-10 and a greater IFN-γ/IL-10 ratio, in addition to a greater IL-6/IL-10 ratio, were found in both the pre- and postvaccination periods, and (2) lower levels of total sIgA, IL-12p70, IL-17A, TNF-α, and the IL-12p70/IL-10 ratio, in addition to higher levels of specific sIgA for SARS-CoV-2 antigens and lysozyme, were observed only in the postvaccination period in the ChadOx-1 group than in the CoronaVac group. Intragroup analysis revealed (1) a significant increase in the salivary levels of total peroxides in the postvaccination period compared to those in the prevaccination period in both volunteer groups; (2) a decrease in the levels of lysozyme and the ratio between total antioxidant capacity (TAC) and total peroxides in the postvaccination period in the CoronaVac group compared with those in the prevaccination period; and (3) decreases in the TNF-α, IL-6, and IL-12p70 levels, and the IL-12p70/IL-10 ratio in the ChadoX-1 group, as well as a higher lactoferrin concentration in the postvaccination period than in the prevaccination period. Several positive and negative correlations between the parameters assessed here were found. CONCLUSIONS: In general, the ChadOx-1 group exhibited improvements in both immune/inflammatory responses and redox balance and greater immunogenicity than did the CoronaVac group.
Subject(s)
COVID-19 Vaccines , COVID-19 , Oxidative Stress , Saliva , Humans , Female , Male , Aged , Oxidative Stress/physiology , Oxidative Stress/drug effects , Saliva/metabolism , Saliva/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , Aged, 80 and over , Cytokines/metabolism , SARS-CoV-2/immunology , Immunoglobulin G , Inflammation/metabolism , Vaccines, InactivatedABSTRACT
The complement system is a crucial part of innate immune defenses against invading pathogens. The blood-meal of the tick Rhipicephalus pulchellus lasts for days, and the tick must therefore rely on inhibitors to counter complement activation. We have identified a class of inhibitors from tick saliva, the CirpT family, and generated detailed structural data revealing their mechanism of action. We show direct binding of a CirpT to complement C5 and have determined the structure of the C5-CirpT complex by cryoelectron microscopy. This reveals an interaction with the peripheral macro globulin domain 4 (C5_MG4) of C5. To achieve higher resolution detail, the structure of the C5_MG4-CirpT complex was solved by X-ray crystallography (at 2.7 Å). We thus present the fold of the CirpT protein family, and provide detailed mechanistic insights into its inhibitory function. Analysis of the binding interface reveals a mechanism of C5 inhibition, and provides information to expand our biological understanding of the activation of C5, and thus the terminal complement pathway.
Subject(s)
Arthropod Proteins/immunology , Complement Activation/immunology , Complement C5/antagonists & inhibitors , Immunity, Innate , Rhipicephalus/immunology , Animals , Arthropod Proteins/metabolism , Arthropod Proteins/ultrastructure , Complement C5/immunology , Complement C5/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , Erythrocytes/immunology , Feeding Behavior , Female , Guinea Pigs , Hemolysis/immunology , Humans , Male , Protein Binding/immunology , Protein Domains/immunology , Rabbits , Rats , Rhipicephalus/metabolism , Saliva/immunology , Saliva/metabolism , SheepABSTRACT
Why should we explore and study disease mechanisms? This is particularly important when we are dealing with complex pathogenesis without a direct causal agent, for example, syndromes with multiple organ involvements. Sjögren's syndrome is definitely such an entity. Also, there are a number of reasons for such studies such as disclosing the aetiology, to identify biomarkers for diagnosis and assessment of the disease process and monitor response to treatment, to determine targets for treatment, to define critical items in classification criteria, amongst others. Samples available for the study of disease mechanisms in Sjögren's syndrome have included serum (autoantibodies, cytokines), DNA (gene profiling, GWAS), cells (phenotypes/flow cytometry, proportion of cells/CyTOF), tissue (focal inflammation, germinal centres, mass cytometry), and saliva (proteomics, biochemistry, mucosal immunity). An original explanatory concept for the pathogenesis of Sjögren's syndrome proposed a specific and self-perpetuating immune-mediated loss of exocrine tissue as the principal cause of glandular hypofunction. This hypothesis however falls short of accommodating several Sjögren's syndrome-related phenomena and experimental findings. Today, the emergence of advanced bio-analytical platforms has further enabled the identification of central pathogenic processes and potential biomarkers. The purpose of this minor review is to highlight a selection of previous but also recent and novel aspects on the disease mechanisms in Sjögren's syndrome.
Subject(s)
Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology , Animals , Biomarkers/metabolism , Humans , Saliva/immunology , Saliva/metabolism , Serum/immunology , Serum/metabolismABSTRACT
Background: Secretory immunoglobulin A (sIgA) plays an important role in antiviral protective immunity. Although salivary testing has been used for many viral infections, including severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS), its use has not yet been well established with the SARS coronavirus 2 (SARS-CoV-2). Quantification of salivary IgA and IgG antibodies can elucidate mucosal and systemic immune responses after natural infection or vaccination. Here, we report the development and validation of a rapid enzyme-linked immunosorbent assay (ELISA) for anti-SARS-CoV-2 salivary IgA and serum IgG antibodies, and present quantitative results for immunized subjects both prior to or following COVID-19 infections. Objective: Total and serum SARS-CoV-2 spike-specific IgG responses were compared with salivary spike-specific IgA and IgG responses in samples obtained from patients recently infected with SARS-CoV-2 and from subjects recently immunized with COVID-19 vaccines. Methods: A total of 52 paired saliva and serum samples were collected from 26 study participants: 7 subjects after COVID-19 infection and 19 subjects who were uninfected. The ELISA results from these samples were compared with five prepandemic control serum samples. Total IgG and SARS-CoV-2 spike-specific IgG in the serum samples from the subjects who were infected and vaccinated were also measured in a commercial laboratory with an enzyme immunoassay. Results: A wide variation in antibody responses was seen in salivary and serum samples measured by both methods. Three groups of serum total and IgG spike-specific SARS-CoV-2 antibody responses were observed: (1) low, (2) intermediate, and (3) high antibody responders. A correlational analysis of salivary IgA (sIgA) responses with serum IgG concentrations showed a statistical correlation in the low and intermediate antibody responder groups but not in the high group (which we believe was a result of saturation). Conclusion: These preliminary findings suggest measuring salivary and serum IgG and IgA merit further investigation as markers of current or recent SARS-CoV-2 infections.
Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin A, Secretory , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Saliva/chemistry , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , VaccinationABSTRACT
BACKGROUND: The oral mucosa is the initial interface between food antigens, microbiota, and mucosal immunity, yet, little is known about oral host-environment dynamics in food allergy. OBJECTIVE: Our aim was to determine oral microbial, metabolic, and immunologic profiles associated with peanut allergy. METHODS: We recruited 105 subjects (56 with peanut allergy and 49 healthy subjects) for salivary microbiome profiling using 16S ribosomal RNA sequencing, short-chain fatty acid (SCFA) metabolite assays using liquid chromatography/mass spectrometry, and measurement of oral secreted cytokines using multiplex assays. Analyses within and across data types were performed. RESULTS: The oral microbiome of individuals with peanut allergy was characterized by reduced species in the orders Lactobacillales, Bacteroidales (Prevotella spp), and Bacillales, and increased Neisseriales spp. The distinct oral microbiome of subjects with peanut allergy was accompanied by significant reductions in oral SCFA levels, including acetate, butyrate, and propionate, and significant elevation of IL-4 secretion. Decreased abundances of oral Prevotella spp and Veillonella spp in subjects with peanut allergy were significantly correlated with reduced oral SCFA levels (false discovery rate < 0.05), and increased oral Neisseria spp was correlated with lower oral SCFA levels (false discovery rate < 0.05). Additionally, oral Prevotella spp abundances were correlated with decreased local secretion of TH2-stimulating epithelial factors (IL-33 and thymic stromal lymphopoietin) and TH2 cytokines (IL-4, IL-5, and IL-13), whereas oral Neisseria spp abundance was positively associated with a TH2-skewed oral immune milieu. CONCLUSION: Our novel multidimensional analysis of the oral environment revealed distinct microbial and metabolic profiles associated with mucosal immune disturbances in peanut allergy. Our findings highlight the oral environment as an anatomic site of interest to examine host-microbiome dynamics in food allergy.
Subject(s)
Bacteria , Microbiota/immunology , Mouth , Peanut Hypersensitivity , Saliva , Adolescent , Bacteria/classification , Bacteria/immunology , Child , Cytokines/immunology , Female , Humans , Male , Mouth/immunology , Mouth/microbiology , Peanut Hypersensitivity/immunology , Peanut Hypersensitivity/microbiology , Saliva/immunology , Saliva/microbiology , Th2 Cells/immunologyABSTRACT
BACKGROUND: Whereas severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody tests are increasingly being used to estimate the prevalence of SARS-CoV-2 infection, the determinants of these antibody responses remain unclear. OBJECTIVES: Our aim was to evaluate systemic and mucosal antibody responses toward SARS-CoV-2 in mild versus severe coronavirus disease 2019 (COVID-19) cases. METHODS: Using immunoassays specific for SARS-CoV-2 spike proteins, we determined SARS-CoV-2-specific IgA and IgG in sera and mucosal fluids of 2 cohorts, including SARS-CoV-2 PCR-positive patients (n = 64) and PCR-positive and PCR-negtive health care workers (n = 109). RESULTS: SARS-CoV-2-specific serum IgA titers in patients with mild COVID-19 were often transiently positive, whereas serum IgG titers remained negative or became positive 12 to 14 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers after symptom onset. Very high titers of SARS-CoV-2-specific serum IgA were correlated with severe acute respiratory distress syndrome. Interestingly, some health care workers with negative SARS-CoV-2-specific serum antibody titers showed SARS-CoV-2-specific IgA in mucosal fluids with virus-neutralizing capacity in some cases. SARS-CoV-2-specific IgA titers in nasal fluids were inversely correlated with age. CONCLUSIONS: Systemic antibody production against SARS-CoV-2 develops mainly in patients with severe COVID-19, with very high IgA titers seen in patients with severe acute respiratory distress syndrome, whereas mild disease may be associated with transient production of SARS-CoV-2-specific antibodies but may stimulate mucosal SARS-CoV-2-specific IgA secretion.
Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Mucous Membrane/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Saliva/immunology , Severity of Illness Index , Tears/immunologyABSTRACT
BACKGROUND: Declining humoral immunity in coronavirus disease 2019 (COVID-19) patients and possible reinfection have raised concern. Mucosal immunity, particularly salivary antibodies, may be short lived although long-term studies are lacking. METHODS: Using a multiplex bead-based array platform, we investigated antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in 256 saliva samples from convalescent patients 1-9 months after symptomatic COVID-19 (nâ =â 74, cohort 1), undiagnosed individuals with self-reported questionnaires (nâ =â 147, cohort 2), and individuals sampled prepandemic (nâ =â 35, cohort 3). RESULTS: Salivary IgG antibody responses in cohort 1 (mainly mild COVID-19) were detectable up to 9 months postrecovery, with high correlations between spike and nucleocapsid specificity. At 9 months, IgG remained in blood and saliva in most patients. Salivary IgA was rarely detected at this time point. In cohort 2, salivary IgG and IgA responses were significantly associated with recent history of COVID-19-like symptoms. Salivary IgG tolerated temperature and detergent pretreatments. CONCLUSIONS: Unlike SARS-CoV-2 salivary IgA that appeared short lived, specific saliva IgG appeared stable even after mild COVID-19, as for blood serology. This noninvasive saliva-based SARS-CoV-2 antibody test with home self-collection may be a complementary alternative to conventional blood serology.
Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Saliva/immunology , Adult , Aged , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Time Factors , Young AdultABSTRACT
BACKGROUND: In animal models, immunity to mosquito salivary proteins protects animals against mosquito-borne disease. These findings provide a rationale to vaccinate against mosquito saliva instead of the pathogen itself. To our knowledge, no vector salivary protein-based vaccine has been tested for safety and immunogenicity in humans. We aimed to assess the safety and immunogenicity of Anopheles gambiae saliva vaccine (AGS-v), a peptide-based vaccine derived from four A gambiae salivary proteins, in humans. METHODS: In this randomised, placebo-controlled, double-blind, phase 1 trial, participants were enrolled at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Participants were eligible if they were healthy adults, aged 18-50 years with no history of severe allergic reactions to mosquito bites. Participants were randomly assigned (1:1:1), using block randomisation and a computer-generated randomisation sequence, to treatment with either 200 nmol of AGS-v vaccine alone, 200 nmol of AGS-v with adjuvant (Montanide ISA 51), or sterile water as placebo. Participants and clinicians were masked to treatment assignment. Participants were given a subcutaneous injection of their allocated treatment at day 0 and day 21, followed by exposure to feeding by an uninfected Aedes aegypti mosquito at day 42 to assess subsequent risk to mosquito bites in a controlled setting. The primary endpoints were safety and immunogenicity at day 42 after the first immunisation. Participants who were given at least one dose of assigned treatment were assessed for the primary endpoints and analysis was by intention to treat. The trial was registered with ClinicalTrials.gov, NCT03055000, and is closed for accrual. FINDINGS: Between Feb 15 and Sept 10, 2017, we enrolled and randomly assigned 49 healthy adult participants to the adjuvanted vaccine (n=17), vaccine alone (n=16), or placebo group (n=16). Five participants did not complete the two-injection regimen with mosquito feeding at day 42, but were included in the safety analyses. No systemic safety concerns were identified; however, one participant in the adjuvanted vaccine group developed a grade 3 erythematous rash at the injection site. Pain, swelling, erythema, and itching were the most commonly reported local symptoms and were significantly increased in the adjuvanted vaccine group compared with both other treatment groups (nine [53%] of 17 participants in the adjuvanted vaccine group, two [13%] of 16 in the vaccine only group, and one [6%] of 16 in the placebo group; p=0·004). By day 42, participants who were given the adjuvanted vaccine had a significant increase in vaccine-specific total IgG antibodies compared with at baseline than did participants who were give vaccine only (absolute difference of log10-fold change of 0·64 [95% CI 0·39 to 0·89]; p=0·0002) and who were given placebo (0·62 [0·34 to 0·91]; p=0·0001). We saw a significant increase in IFN-γ production by peripheral blood mononuclear cells at day 42 in the adjuvanted vaccine group compared with in the placebo group (absolute difference of log10 ratio of vaccine peptide-stimulated vs negative control 0·17 [95% CI 0·061 to 0·27]; p=0·009) but we saw no difference between the IFN-γ production in the vaccine only group compared with the placebo group (0·022 [-0·072 to 0·116]; p=0·63). INTERPRETATION: AGS-v was well tolerated, and, when adjuvanted, immunogenic. These findings suggest that vector-targeted vaccine administration in humans is safe and could be a viable option for the increasing burden of vector-borne disease. FUNDING: Office of the Director and the Division of Intramural Research at the National Institute of Allergy and Infectious Diseases, and National Institutes of Health.
Subject(s)
Adjuvants, Immunologic/administration & dosage , Disease Transmission, Infectious/prevention & control , Immunogenicity, Vaccine/immunology , Saliva/immunology , Adjuvants, Immunologic/adverse effects , Adult , Animals , Anopheles/immunology , Anopheles/metabolism , Case-Control Studies , Double-Blind Method , Female , Humans , Immunoglobulin G/immunology , Injections, Subcutaneous/methods , Leukocytes, Mononuclear/immunology , Male , Models, Animal , Mosquito Vectors/immunology , Mosquito Vectors/metabolism , Placebos/administration & dosage , Safety , Vaccination/adverse effects , Vaccination/methodsABSTRACT
Tests for COVID-19 generally measure SARS-CoV-2 viral RNA from nasal swabs or antibodies against the virus from blood. It has been shown, however, that both viral particles and antibodies against those particles are present in saliva, which is more accessible than both swabs and blood. We present methods for highly sensitive measurements of both viral RNA and antibodies from the same saliva sample. We developed an efficient saliva RNA extraction method and combined it with an ultrasensitive antibody test based on single molecule array (Simoa) technology. We apply our test to the saliva of patients who presented to the hospital with COVID-19 symptoms, some of whom tested positive with a conventional RT-qPCR nasopharyngeal swab test. We demonstrate that combining viral RNA detection by RT-qPCR with antibody detection by Simoa identifies more patients as infected than either method alone. Our results demonstrate the utility of combining viral RNA and antibody testing from saliva, a single easily accessible biofluid.
Subject(s)
Antibodies, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Saliva/immunology , COVID-19/virology , Female , Humans , Limit of Detection , Male , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2/immunologyABSTRACT
Current commercially available methods for reliably detecting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain expensive and inaccessible due to the need for whole-blood collection by highly trained phlebotomists using personal protective equipment (PPE). We have evaluated an antibody detection approach using the OraSure Technologies oral antibody collection device (OACD) and their proprietary SARS-CoV-2 total antibody detection enzyme-linked immunosorbent assay (ELISA). We found that the OraSure test for total antibody detection in oral fluid had comparable sensitivity and specificity to commercially available serum-based ELISAs for SARS-CoV-2 antibody detection while allowing for a more accessible form of specimen collection with the potential for self-collection.
Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/instrumentation , COVID-19 Serological Testing/instrumentation , COVID-19 Serological Testing/standards , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/analysis , SARS-CoV-2/immunology , Saliva/immunology , Sensitivity and Specificity , Specimen Handling/methods , Specimen Handling/standardsABSTRACT
Sjögren's syndrome (SS) is a chronic autoimmune disease that mainly damages the salivary and lacrimal glands. Immune complex (IC) formation triggers local inflammation through IC deposition and decreased antigen function. Some ICs can leak from the lesion and into the saliva, but no salivary ICs have been reported to date. We used immune complexome analysis to comprehensively identify antigens incorporated into IC (IC-antigens) in saliva samples from patients with SS (n = 9) or with xerostomia (n = 7). Neutrophil defensin 1 (67%), small proline-rich protein 2D (67%), myeloperoxidase (44%), neutrophil elastase (44%), cathepsin G (33%), nuclear mitotic apparatus 1 (33%) and phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit gamma (33%) were identified as new IC-antigens specifically and frequently detected in the saliva of SS patients. Of these, neutrophil defensin 1, myeloperoxidase, neutrophil elastase and cathepsin G are neutrophil intracellular proteins, which suggests that repeated destruction of neutrophils due to abnormal autoimmunity may be involved in the pathogenesis of SS. We also analyzed serum samples from three SS patients. There was little overlap of IC-antigens between two of the samples (fewer than 30% of the IC-antigens in the saliva samples), suggesting that many ICs are formed locally and independently of the circulation. In addition, we found that four SS-specific salivary antigens show sequence homology with several proteins of oral microbiomes but no antigen has homology with Epstein-Barr virus proteins. The homology between some IC-antigens and oral microbiome proteins may indicate the impact of oral infection on local autoimmunity through molecular mimicry theory.