Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.279
Filter
Add more filters

Publication year range
1.
J Cell Mol Med ; 28(6): e18146, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426932

ABSTRACT

Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1ß and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.


Subject(s)
Acne Vulgaris , Saponins , Humans , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lipopolysaccharides/adverse effects , Saponins/pharmacology , Saponins/therapeutic use , Molecular Docking Simulation , Anti-Inflammatory Agents/therapeutic use , NF-kappa B/metabolism , Gram-Negative Bacteria/metabolism , Acne Vulgaris/drug therapy , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/metabolism
2.
Biochem Biophys Res Commun ; 703: 149648, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38368675

ABSTRACT

Our prior investigation has confirmed that the anti-hepatocellular carcinoma activity of the plant saponin, specifically Uttroside B (Utt-B), derived from the leaves of Solanum nigrum Linn. This study concentrated on formulating a novel biocompatible nanocarrier utilizing Extracellular vesicles (EVs) to enhance the delivery of plant saponin into cells. The physicochemical attributes of Extracellular Vesicles/UttrosideB (EVs/Utt-B) were comprehensively characterized through techniques such as Transmission Electron Microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Despite the promising therapeutic potential of this uttroside B, mechanistic know-how about its entry into cells is still in its infancy. Our research sheds light on the extracellular vesicle-mediated mechanism facilitating the entry of the saponin into cells, a phenomenon confirmed through the use of by confocal microscopy. We further analysed drug-releasing kinetics and simulated the Pharmacokinetics by PBPK modelling. The simulated pharmacokinetics revealed the bioavailability of Uttroside-B in oral administration against intravenous administration.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Saponins , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Microscopy, Electron, Transmission , Saponins/therapeutic use
3.
Biochem Biophys Res Commun ; 697: 149524, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38252991

ABSTRACT

Breast cancer (BC) is one of the malignancies threatening the woman's health. Our study aims to explore the underlying mechanism behind the anti-tumor function of Paris saponin VII (PS VII) in BC. Xenografting experiment was conducted to monitor the tumor growth. The Ki67 and 4-HNE expression were analyzed via immunohistochemical assay. After different treatments, the cell viability, proliferation, invasion, and migration capacity of BC cells were measured by the CCK-8, colony formation, transwell, and wound healing assays, respectively. The ratio of GSH/GSSG was measured by the GSH/GSSG ratio detection assay kit. The lipid ROS and Fe2+ levels were quantified by flow cytometry analysis. The expressions of TFR1, ACSL4, Nrf2, and GPX4 were measured via western blotting. Compared with the Ctrl group, the tumor volumes, and Ki67 expression were markedly reduced in PS VII groups, and the BC cell viability was decreased by PS VII treatment in a dose-dependent manner. The colony numbers, invasive cells, and migration rates were also significantly decreased by PS VII treatment. Then, the Nrf2 as well as GPX4 expressions were decreased and TFR1 expression was increased by PS VII treatment in vitro and in vivo, while there was no difference in ACSL4 expression between Ctrl and PS VII groups. Moreover, the above effects of PS VII could not be observed in GPX4 knockdown cells. PS VII can promote ferroptosis to inhibit BC via the Nrf2/GPX4 axis, which innovatively suggests the pro-ferroptosis effect and therapeutic potential of PS VII in BC.


Subject(s)
Breast Neoplasms , Ferroptosis , Saponins , Female , Humans , Breast Neoplasms/drug therapy , Ferroptosis/drug effects , Glutathione Disulfide , Ki-67 Antigen , NF-E2-Related Factor 2 , Saponins/pharmacology , Saponins/therapeutic use
4.
Biochem Biophys Res Commun ; 695: 149451, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38176173

ABSTRACT

BACKGROUND/OBJECTIVE: DT-13, the principal active component of Mysidium shortscapes from the Liliaceae family, has garnered substantial interest in cancer therapy owing to its potential anticancer properties. This study investigated the effects of DT-13 on the proliferation and apoptosis of human pancreatic cancer cell lines and aimed to elucidate the underlying mechanisms. METHODS: PANC1 and CFPAC1 cells were exposed to DT-13 and their proliferation was assessed using RTCA and clone formation assays. Apoptotic protein expression was analyzed by western blotting, and apoptotic cells were identified by flow cytometry. RNA was extracted from DT-13 treated and untreated PANC1 cells for RNA sequencing. Differentially expressed genes were identified and subjected to GO bioprocess, KEGG pathway analysis, and western blotting. Finally, to evaluate tumor growth, CFPAC1 cells were subcutaneously injected into BALB/c nude mice. RESULTS: DT-13 inhibited proliferation and induced apoptosis of PANC1 and CFPAC1 cells by activating the AMPK/mTOR pathway and suppressing p70 S6K. Moreover, DT-13 hindered the growth of CFPAC1 xenograft tumors in nude mice. CONCLUSIONS: DT-13 effectively inhibited the growth of human pancreatic cancer cells.


Subject(s)
AMP-Activated Protein Kinases , Pancreatic Neoplasms , Saponins , Animals , Humans , Mice , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays , Saponins/pharmacology , Saponins/therapeutic use
5.
J Transl Med ; 22(1): 406, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689349

ABSTRACT

BACKGROUND: The specific pathogenesis of UC is still unclear, but it has been clear that defects in intestinal barrier function play an important role in it. There is a temporary lack of specific drugs for clinical treatment. Astragaloside IV (AS-IV) is one of the main active ingredients extracted from Astragalus root and is a common Chinese herbal medicine for the treatment of gastrointestinal diseases. This study aimed to determine whether AS-IV has therapeutic value for DSS or LPS-induced intestinal epithelial barrier dysfunction in vivo and in vitro and its potential molecular mechanisms. METHODS: The intestinal tissues from UC patients and colitis mice were collected, intestinal inflammation was observed by colonoscopy, and mucosal barrier function was measured by immunofluorescence staining. PI3K/AKT signaling pathway activator YS-49 and inhibitor LY-29 were administered to colitic mice to uncover the effect of this pathway on gut mucosal barrier modulation. Then, network pharmacology was used to screen Astragaloside IV (AS-IV), a core active component of the traditional Chinese medicine Astragalus membranaceus. The potential of AS-IV for intestinal barrier function repairment and UC treatment through blockade of the PI3K/AKT pathway was further confirmed by histopathological staining, FITC-dextran, transmission electron microscopy, ELISA, immunofluorescence, qRT-PCR, and western blotting. Finally, 16 S rRNA sequencing was performed to uncover whether AS-IV can ameliorate UC by regulating gut microbiota homeostasis. RESULTS: Mucosal barrier function was significantly damaged in UC patients and murine colitis, and the activated PI3K/AKT signaling pathway was extensively involved. Both in vivo and vitro showed that the AS-IV-treated group significantly relieved inflammation and improved intestinal epithelial permeability by inhibiting the activation of the PI3K/AKT signaling pathway. In addition, microbiome data found that gut microbiota participates in AS-IV-mediated intestinal barrier recovery as well. CONCLUSIONS: Our study highlights that AS-IV exerts a protective effect on the integrality of the mucosal barrier in UC based on the PI3K/AKT pathway, and AS-IV may serve as a novel AKT inhibitor to provide a potential therapy for UC.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Saponins , Signal Transduction , Triterpenes , Animals , Humans , Male , Mice , Caco-2 Cells , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use
6.
Pharmacol Res ; 201: 107090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309381

ABSTRACT

Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.


Subject(s)
Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Saponins , Depression/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Neuronal Plasticity
7.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 128-136, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38430031

ABSTRACT

As the main active ingredient of Astragalus, Astragaloside IV (AS-IV) can ameliorate pulmonary fibrosis. In this experiment, we studied how AS-IV reduces idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) or TGF-ß1 was treated in mice or alveolar epithelial cells to mimic IPF in vivo as well as in vitro. ASV-IV alleviated levels of inflammatory cytokines and fibrosis markers in IPF model. Through detection of autophagy-related genes, ASV-IV was observed to induce autophagy in IPF. Besides, ASV-IV inhibited miR-21 expression in IPF models, and overexpression of miR-21 could reverse the protective potential of ASV-IV on IPF. PTEN was targeted by miR-21 and was up-regulated by ASV-IV in IPF models. In addition, levels of inflammatory cytokines and fibrosis markers, autophagy, as well as the PI3K/AKT/mTOR pathway regulated by ASV-IV could be neutralized after treatment with autophagy inhibitors, miR-21 mimics, or si-PTEN. Our study demonstrates that ASV-IV inhibits IPF through activation of autophagy by miR-21-mediated PTEN/PI3K/AKT/mTOR pathway, suggesting that ASV-IV could be acted to be a promising therapeutic method for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , MicroRNAs , Saponins , Triterpenes , Animals , Mice , Autophagy/drug effects , Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , PTEN Phosphohydrolase/drug effects , PTEN Phosphohydrolase/metabolism
8.
Ecotoxicol Environ Saf ; 269: 115810, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38100849

ABSTRACT

BACKGROUND: Jujuboside B (JuB) is the main bioactive saponin component of Chinese anti-insomnia herbal medicine Ziziphi Spinosae Semen, which has been reported to possess varied pharmacological functions. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of JuB on acetaminophen (APAP) overdose-induced hepatotoxicity have not been determined yet. METHODS: C57BL/6 J mice were pre-treated with JuB (20 or 40 mg/kg) for seven days before APAP (400 mg/kg) injection. After 24 h of APAP treatment, serum, and liver tissues were collected to evaluate the therapeutic effects. To investigate whether the Nrf2-STING signaling pathway is involved in the protective effects of JuB against APAP-induced hepatotoxicity, the mice received the DMXAA (the specific STING agonist) or ML385 (the specific Nrf2 inhibitor) during the administration of JuB, and Hematoxylin-eosin staining, Real-time PCR, immunohistochemical, and western blot were performed. RESULTS: JuB pretreatment reversed APAP-induced CYP2E1 accumulations and alleviated APAP-induced acute liver injury. Furthermore, JuB treatment significantly inhibited oxidative stress and the pro-inflammatory cytokines, as well as alleviated hepatocyte apoptosis induced by APAP. Besides, our result also demonstrated that JuB treatment upregulated the levels of total Nrf2, facilitated its nuclear translocation, upregulated the expression of HO-1 and NQO-1, and inhibited the APAP-induced STING pathway activation. Finally, we verified that the beneficial effects of JuB were weakened by DMXAA and ML385. CONCLUSION: Our study suggested that JuB could ameliorate APAP-induced hepatic damage and verified a previously unrecognized mechanism by which JuB prevented APAP-induced hepatotoxicity through adjusting the Nrf2-STING pathway.


Subject(s)
Chemical and Drug Induced Liver Injury , Saponins , Animals , Mice , Acetaminophen/toxicity , Acetaminophen/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Mice, Inbred C57BL , Signal Transduction , Oxidative Stress , Liver , Saponins/pharmacology , Saponins/therapeutic use
9.
Phytother Res ; 38(4): 2007-2022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372176

ABSTRACT

This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.


Subject(s)
Panax notoginseng , Saponins , Humans , Saponins/therapeutic use , Panax notoginseng/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , NF-kappa B
10.
COPD ; 21(1): 2329282, 2024 12.
Article in English | MEDLINE | ID: mdl-38622983

ABSTRACT

COPD is an inflammatory lung disease that limits airflow and remodels the pulmonary vascular system. This study delves into the therapeutic potential and mechanistic underpinnings of Panax notoginseng Saponins (PNS) in alleviating inflammation and pulmonary vascular remodeling in a COPD rat model. Symmap and ETCM databases provided Panax notoginseng-related target genes, and the CTD and DisGeNET databases provided COPD-related genes. Intersection genes were subjected to protein-protein interaction analysis and pathway enrichment to identify downstream pathways. A COPD rat model was established, with groups receiving varying doses of PNS and a Roxithromycin control. The pathological changes in lung tissue and vasculature were examined using histological staining, while molecular alterations were explored through ELISA, RT-PCR, and Western blot. Network pharmacology research suggested PNS may affect the TLR4/NF-κB pathway linked to COPD development. The study revealed that, in contrast to the control group, the COPD model exhibited a significant increase in inflammatory markers and pathway components such as TLR4, NF-κB, HIF-1α, VEGF, ICAM-1, SELE mRNA, and serum TNF-α, IL-8, and IL-1ß. Treatment with PNS notably decreased these markers and mitigated inflammation around the bronchi and vessels. Taken together, the study underscores the potential of PNS in reducing lung inflammation and vascular remodeling in COPD rats, primarily via modulation of the TLR4/NF-κB/HIF-1α/VEGF pathway. This research offers valuable insights for developing new therapeutic strategies for managing and preventing COPD.


Subject(s)
Panax notoginseng , Pulmonary Disease, Chronic Obstructive , Saponins , Rats , Animals , Saponins/pharmacology , Saponins/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , NF-kappa B/metabolism , Panax notoginseng/metabolism , Toll-Like Receptor 4/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Remodeling , Lung , Inflammation/drug therapy
11.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675613

ABSTRACT

Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Saponins , Humans , Acne Vulgaris/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunologic Factors/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/isolation & purification , Melanthiaceae/chemistry , Liliaceae/chemistry
12.
Altern Ther Health Med ; 29(3): 127-133, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36689360

ABSTRACT

Context: The persistent use of anticancer medicines can cause multidrug resistance in many tumors and serious cytotoxicity for healthy cells, including adriamycin (ADR), a treatment for breast cancer (BC). Cell resistance to ADR in patients with recurrent advanced BC can occur. Creating effective treatments that can grapple with multidrug resistance is still challenging. Traditional Chinese medicine (TCM) may offer a solution in D Rhamnose beta-hederin (DRß-H), an oleanane type of triterpenoid saponin. Objective: The study intended to assess the ability of DRß-H to inhibit the ADR resistance of two BC-lineage cell lines, MCF-7 and SUM-1315, and to explore the causal link between DRß-H and the reversal of chemoresistance. Design: The research team performed a cell biology study. Setting: The study took place at laboratory in China. Outcome Measures: The research team: (1) assessed cell viability and the migration and invasion the cell lines; (2) investigated the molecular mechanism and identified the downstream targets of DRß-H, and (3) comprehensively examined the expression pattern, underlying functions, and evident prognostic significance of NAP1L5 in BC by gathering the online information available. Results: DRß-H can inhibit the viability of the MCF-7/ADR and SUM-1315/ADR cancer cells in a dosage-dependent manner. NAP1L5 might be the main target of DRß-H in reversing ADR resistance. Its expression decreased in BC cells, and the more advanced the BC was, the lower the NAP1L5 expression was. Conclusion: DRß-H at nontoxic concentrations was related to ADR resistance in BC through its downstream target NAP1L5. NAP1L5 is potentially a preferable prognostic marker for BC.


Subject(s)
Breast Neoplasms , Saponins , Humans , Female , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Saponins/pharmacology , Saponins/therapeutic use , Nuclear Proteins/pharmacology , Nuclear Proteins/therapeutic use
13.
Phytother Res ; 37(11): 5017-5040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37491018

ABSTRACT

The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.


Subject(s)
Alzheimer Disease , Saponins , Triterpenes , Humans , Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Neuroprotection , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use
14.
Phytother Res ; 37(7): 2902-2914, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36867511

ABSTRACT

Capilliposide B (CPS-B), a novel oleanane triterpenoid saponin derived from Lysimachia capillipes Hemsl, is a potent anticancer agent. However, its anticancer mechanism remains elusive. In the present study, we demonstrated the potent anti-tumor activity and molecular mechanism of CPS-B both in vitro and in vivo. Proteomic analysis using isobaric tags for relative and absolute quantitation techniques suggested that CPS-B modulated autophagy in prostate cancer (PC). Moreover, Western blotting showed that both autophagy and epithelial-mesenchymal transition occurred place after CPS-B treatment in vivo, which was also proven in PC-3 cancer cells. We deduced that CPS-B inhibited migration by inducing autophagy. We examined the accumulation of reactive oxygen species (ROS) in cells, and in downstream pathways, LKB1 and AMPK were activated while mTOR was inhibited. Transwell experiment results showed that CPS-B inhibited the metastasis of PC-3 cells and that this effect was significantly attenuated after pretreatment with chloroquine, indicating that CPS-B inhibited metastasis via autophagy induction. Altogether, these data suggest that CPS-B is a potential therapeutic agent for cancer treatment that acts by inhibiting migration through the ROS/AMPK/mTOR signaling pathway.


Subject(s)
Prostatic Neoplasms , Saponins , Triterpenes , Male , Humans , Reactive Oxygen Species/metabolism , AMP-Activated Protein Kinases/metabolism , Proteomics , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Autophagy , Prostatic Neoplasms/metabolism , Cell Line, Tumor
15.
Phytother Res ; 37(12): 5974-5990, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778741

ABSTRACT

Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.


Subject(s)
Acute Kidney Injury , NF-kappa B , Saponins , Animals , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , NF-kappa B/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Phosphoinositide Phospholipase C
16.
Environ Toxicol ; 38(5): 1174-1184, 2023 May.
Article in English | MEDLINE | ID: mdl-36773305

ABSTRACT

Polyphyllin G, a pennogenyl saponin extracted from Paris polyphylla, has been shown to possess antitumor effects. In this study, we demonstrated that doxycycline, an antibiotic medicine, could significantly enhance the sensitivities of osteosarcoma cell lines to polyphyllin G. As the cells were pretreated with doxycycline at non-toxic concentrations and then co-exposed to polyphyllin G, this combination could induce a rapid cell death distinct from apoptosis. The non-apoptotic cell death was characterized by a loss of integrity of plasma membrane without externalization of phosphatidyl serine. Furthermore, this combined treatment resulted in suppression of cell viability and colony-forming ability, and increased the level of γ-H2A.X, a critical marker for DNA damage, in osteosarcoma cell lines. When examining the underlying mechanism, it was revealed combination of polyphyllin G and doxycycline triggered an enhanced generation of reactive oxygen species (ROS), and up-regulated mitochondrial oxidative stress within 0.5 h. Co-administration of the ROS inhibitor NAC reversed the suppressed cell viability and colony-forming ability, and abolished the increased level of γ-H2A.X in the cells with the combined treatment, indicating that the enhanced ROS was involved in the anti-proliferative effect of the combined treatment. Overall, the results demonstrated that doxycycline may function as chemosensitizers by inducing an acute and lethal ROS production to enhance cytotoxic of polyphyllin G in osteosarcoma cell lines, and the combined use of drugs may provide an alternative thinking for the development of new therapeutic agents.


Subject(s)
Doxycycline , Osteosarcoma , Reactive Oxygen Species , Saponins , Humans , Apoptosis , Cell Death , Cell Line, Tumor , Doxycycline/pharmacology , Doxycycline/therapeutic use , Osteosarcoma/pathology , Reactive Oxygen Species/metabolism , Saponins/pharmacology , Saponins/therapeutic use
17.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445682

ABSTRACT

Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Saponins , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Saponins/pharmacology , Saponins/therapeutic use , tau Proteins
18.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675303

ABSTRACT

Stroke, one of the leading causes of disability and death worldwide, is a severe neurological disease that threatens human life. Protopanaxatriol (PPT), panaxatriol-type saponin aglycone, is a rare saponin that exists in Panax ginseng and Panax Noto-ginseng. In this study, we established an oxygen-glucose deprivation (OGD)-PC12 cell model and middle cerebral artery occlusion/reperfusion (MCAO/R) model to evaluate the neuroprotective effects of PPT in vitro and in vivo. In addition, metabolomics analysis was performed on rat plasma and brain tissue samples to find relevant biomarkers and metabolic pathways. The results showed that PPT could significantly regulate the levels of LDH, MDA, SOD, TNF-α and IL-6 factors in OGD-PC12 cells in vitro. PPT can reduce the neurological deficit score and infarct volume of brain tissue in rats, restore the integrity of the blood-brain barrier, reduce pathological damage, and regulate TNF-α, IL-1ß, IL-6, MDA, and SOD factors. In addition, the results of metabolomics found that PPT can regulate 19 biomarkers involving five metabolic pathways, including amino acid metabolism, arachidonic acid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. Thus, it could be inferred that PPT might serve as a novel natural agent for MCAO/R treatment.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Saponins , Rats , Humans , Animals , Brain Ischemia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-6 , Infarction, Middle Cerebral Artery/pathology , Glucose , Reperfusion Injury/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Superoxide Dismutase
19.
Molecules ; 28(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570648

ABSTRACT

In the last decade, gypsogenin has attracted widespread attention from medicinal chemists by virtue of its prominent anti-cancer potential. Despite its late identification, gypsogenin has proved itself as a new anti-proliferative player battling for a frontline position among other classic pentacyclic triterpenes such as oleanolic acid, glycyrrhetinic acid, ursolic acid, betulinic acid, and celastrol. Herein, we present the most important reactions of gypsogenin via modification of its four functional groups. Furthermore, we demonstrate insights into the anti-cancer activity of gypsogenin and its semisynthetic derivatives and go further by introducing our perspective to judiciously guide the prospective rational design. The present article opens a new venue for a better exploitation of gypsogenin chemical entity as a lead compound in cancer chemotherapy. To the best of our knowledge, this is the first review article exploring the anti-cancer activity of gypsogenin derivatives.


Subject(s)
Neoplasms , Oleanolic Acid , Saponins , Triterpenes , Humans , Prospective Studies , Pentacyclic Triterpenes/chemistry , Triterpenes/chemistry , Saponins/therapeutic use , Neoplasms/drug therapy
20.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513375

ABSTRACT

Cancer, as one of the leading causes of death worldwide, has challenged current chemotherapy drugs. Considering that treatments are expensive, alongside the resistance of tumor cells to anticancer drugs, the development of alternative medicines is necessary. Anemarrhena asphodeloides Bunge, a recognized and well-known medicinal plant for more than two thousand years, has demonstrated its effectiveness against cancer. Timosaponin-AIII (TSAIII), as a bioactive steroid saponin isolated from A. asphodeloides, has shown multiple pharmacological activities and has been developed as an anticancer agent. However, the molecular mechanisms of TSAIII in protecting against cancer development are still unclear. In this review article, we provide a comprehensive discussion on the anticancer effects of TSAIII, including proliferation inhibition, cell cycle arrest, apoptosis induction, autophagy mediation, migration and invasion suppression, anti-angiogenesis, anti-inflammation, and antioxidant effects. The pharmacokinetic profiles of TSAII are also discussed. TSAIII exhibits efficacy against cancer development. However, hydrophobicity and low bioavailability may limit the application of TSAIII. Effective delivery systems, particularly those with tissue/cell-targeted properties, can also significantly improve the anticancer effects of TSAIII.


Subject(s)
Anemarrhena , Antineoplastic Agents , Neoplasms , Plants, Medicinal , Saponins , Humans , Steroids/pharmacology , Steroids/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/prevention & control , Saponins/pharmacology , Saponins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL