Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 819
Filter
Add more filters

Publication year range
1.
Parasitol Res ; 123(5): 215, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771511

ABSTRACT

Schistosomiasis is a neglected tropical disease associated with considerable morbidity. Praziquantel (PZQ) is effective against adult schistosomes, yet, it has little effect on juvenile stages, and PZQ resistance is emerging. Adopting the drug repurposing strategy as well as assuming enhancing the efficacy and lessening the doses and side effects, the present study aimed to investigate the in vivo therapeutic efficacy of the widely used antiarrhythmic, amiodarone, and diuretic, spironolactone, and combinations of them compared to PZQ. Mice were infected by Schistosoma mansoni "S. mansoni" cercariae (Egyptian strain), then they were divided into two major groups: Early- [3 weeks post-infection (wpi)] and late- [6 wpi] treated. Each group was subdivided into seven subgroups: positive control, PZQ, amiodarone, spironolactone, PZQ combined with amiodarone, PZQ combined with spironolactone, and amiodarone combined with spironolactone-treated groups. Among the early-treated groups, spironolactone had the best therapeutic impact indicated by a 69.4% reduction of total worm burden (TWB), 38.6% and 48.4% reduction of liver and intestine egg load, and a significant reduction of liver granuloma number by 49%. Whereas, among the late-treated groups, amiodarone combined with PZQ was superior to PZQ alone evidenced by 96.1% reduction of TWB with the total disappearance of female and copula in the liver and intestine, 53.1% and 84.9% reduction of liver and intestine egg load, and a significant reduction of liver granuloma number by 67.6%. Comparatively, spironolactone was superior to PZQ and amiodarone in the early treatment phase targeting immature stages, while amiodarone had a more potent effect when combined with PZQ in the late treatment phase targeting mature schistosomes.


Subject(s)
Amiodarone , Disease Models, Animal , Praziquantel , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Mice , Schistosoma mansoni/drug effects , Praziquantel/therapeutic use , Praziquantel/pharmacology , Amiodarone/therapeutic use , Amiodarone/pharmacology , Female , Spironolactone/therapeutic use , Spironolactone/pharmacology , Schistosomicides/therapeutic use , Schistosomicides/pharmacology , Male , Anthelmintics/therapeutic use , Anthelmintics/pharmacology , Treatment Outcome , Drug Therapy, Combination , Liver/parasitology
2.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731401

ABSTRACT

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Subject(s)
Azadirachta , Dihydroorotate Dehydrogenase , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors , Schistosomiasis , Azadirachta/chemistry , Animals , Schistosomiasis/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Molecular Dynamics Simulation , Schistosoma mansoni/drug effects , Schistosoma mansoni/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Computer Simulation , Schistosomicides/pharmacology , Schistosomicides/chemistry , Schistosomicides/therapeutic use , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Praziquantel/pharmacology , Praziquantel/chemistry , Praziquantel/therapeutic use
3.
Bioorg Med Chem Lett ; 82: 129164, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36736493

ABSTRACT

For the Schistosoma mansoni flatworm pathogen, we report a structure-activity relationship of 25 derivatives of the N-phenylbenzamide compound, 1 (MMV687807), a Medicines for Malaria Venture compound for which bioactivity was originally identified in 2018. Synthesized compounds were cross-screened against the HEK 293 mammalian cells. Compounds 9 and 11 were identified as fast-acting schistosomicidal compounds whereby adult worm integrity was severely compromised within 1 h. Against HEK 293 mammalian cells, both compounds exhibited high CC50 values (9.8 ± 1.6 and 11.1 ± 0.2 µM respectively) which could translate to comfortable selectivity. When evaluated in a concentration-response format, compound 9 was active in the nanomolar range (EC50 = 80 nM), translating to a selectivity index of 123 over HEK 293 cells. The data encourage the further investigation of N-phenylbenzamides as antischistosomals.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Animals , Humans , HEK293 Cells , Neglected Diseases , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
4.
Molecules ; 28(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446846

ABSTRACT

Malaria and schistosomiasis are two of the neglected tropical diseases that persistently wreak havoc worldwide. Although many antimalarial drugs such as chloroquine are readily available, the emergence of drug resistance necessitates the development of new therapies to combat this disease. Conversely, Praziquantel (PZQ) remains the sole effective drug against schistosomiasis, but its extensive use raises concerns about the potential for drug resistance to develop. In this project, the concept of molecular hybridization was used as a strategy to design the synthesis of new molecular hybrids with potential antimalarial and antischistosomal activity. A total of seventeen molecular hybrids and two PZQ analogues were prepared by coupling 6-alkylpraziquanamines with cinnamic acids and cyclohexane carboxylic acid, respectively. The synthesised compounds were evaluated for their antimalarial and antischistosomal activity; while all of the above compounds were inactive against Plasmodium falciparum (IC50 > 6 µM), many were active against schistosomiasis with four particular compounds exhibiting up to 100% activity against newly transformed schistosomula and adult worms at 50 µM. Compared to PZQ, the reference drug, the activity of which is 91.7% at 1 µM, one particular molecular hybrid, compound 32, which bears a para-isopropyl group on the cinnamic acid moiety, exhibited a notable activity at 10 µM (78.2% activity). This compound has emerged as the front runner candidate that might, after further optimization, hold promise as a potential lead compound in the fight against schistosomiasis.


Subject(s)
Antimalarials , Schistosomiasis , Schistosomicides , Animals , Praziquantel/pharmacology , Praziquantel/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Schistosoma mansoni , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Schistosomiasis/drug therapy
5.
Parasite Immunol ; 44(11): e12945, 2022 11.
Article in English | MEDLINE | ID: mdl-36066812

ABSTRACT

Schistosomiasis is still a major health problem affecting nearly 250 million people worldwide and causes approximately 280,000 deaths per year. The disease causes a serious granulomatous inflammatory response that produces significant mortality. Plumbagin reportedly displays anti-inflammatory, anti-fibrotic, antioxidant and anthelmintic properties. This study further elucidates these properties. Mice were infected with schistosomes and divided into five groups: non-infected untreated (C); infected untreated (IU); non-infected treated with plumbagin (P); infected treated with plumbagin (PI) and infected treated with praziquantel (PZ). Mice treated with 20 mg plumbagin/kg body weight showed reduction of 64.28% and 59.88% in male and female animals, respectively. Also, the number of eggs/g tissue was reduced 69.39%, 68.79% and 69.11% in liver, intestine and liver/intestine combined, respectively. Plumbagin alleviated schistosome-induced hepatosplenomegaly and reduced hepatic granuloma and liver collagen content by 62.5% and 35.26%, respectively while PZQ reduced hepatic granuloma and liver collagen content by 41.11% and 11.21%, respectively. Further, plumbagin treatment significantly (p < .001) reduced IL-4, IL-13, IL-17, IL-37, IFN-γ, TGF-ß and TNF-α levels and significantly (p < .001) upregulated IL-10. Plumbagin treatment restored hepatic enzymes activity to nearly normal levels and induced an increase in catalase, SOD, GSH, total thiol and GST in liver tissue homogenate. NO and LPO content was, however, decreased. Moreover, serum IgG levels significantly increased. The present study is the first to report immunomodulatory and schistosomicidal activities of plumbagin in schistosomiasis.


Subject(s)
Anthelmintics , Schistosomiasis mansoni , Schistosomiasis , Schistosomicides , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Catalase/therapeutic use , Female , Granuloma/drug therapy , Immunoglobulin G , Interleukin-10 , Interleukin-13 , Interleukin-17 , Interleukin-4 , Liver , Male , Mice , Naphthoquinones , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni , Schistosomiasis/drug therapy , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Sulfhydryl Compounds/therapeutic use , Superoxide Dismutase/therapeutic use , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha
6.
Exp Parasitol ; 241: 108357, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998724

ABSTRACT

Schistosomiasis mansoni is an infectious parasitic disease caused by worms of the genus Schistosoma, and praziquantel (PZQ) is the medication available for the treatment of schistosomiasis. However, the existence of resistant strains reinforces the need to develop new schistosomicidal drugs safely and effectively. Thus, the (±)-licarin A neolignan incorporated into poly-Ɛ-caprolactone (PCL) nanoparticles and not incorporated were evaluated for their in vivo schistosomicidal activity. The (±)-licarin A -loaded poly(ε-caprolactone) nanoparticles and the pure (±)-licarin A showed a reduction in the number of worm eggs present in spleens of mice infected with Schistosoma mansoni. In addition, the (±)-licarin A incorporated in the concentration of 20 mg/kg and 200 mg/kg reduced the number of worms, presenting percentages of 56.3% and 41.7%, respectively.


Subject(s)
Nanoparticles , Schistosomiasis mansoni , Schistosomicides , Animals , Caproates , Lactones , Lignans , Mice , Polyesters , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
7.
Exp Parasitol ; 238: 108260, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35447136

ABSTRACT

OBJECTIVE: This study aimed to evaluate the efficacy of gamma-aminobutyric acid (GABA) alone or combined with praziquantel (PZQ) against Schistosoma (S) mansoni infection in a murine model. METHODS: Five groups, 8 mice each, were studied; GI served as normal controls; GII: S. mansoni-infected control group and the other three S. mansoni-infected groups received drug regimens for 5 consecutive days as follows GIII: Infected-PZQ treated group (200 mg/kg/day); GIV: Infected-GABA treated group (300 mg/kg/day) and GV: Infected-PZQ-GABA treated group (100 mg/kg/day for each drug). All animal groups were sacrificed two weeks later and different parasitological, histopathological and biochemical parameters were assessed. RESULTS: Combined GABA-PZQ treated group recorded the highest significant reduction in all parasitological, histopathological and biochemical parameters followed by PZQ and finally GABA groups. Combined GABA-PZQ treatment led to the complete disappearance of immature eggs and marked reduction of deposited eggs in liver tissues and improved liver pathology. Significant improvement in hepatic oxidative stress levels, serum albumin and total protein in response to GABA treatment alone or combined with PZQ. CONCLUSION: GABA had schistosomicidal, hepatoprotective and antioxidant activities against S. mansoni infection, GABA disrupted parasite pairing and activity, reduced the total number of worms recovered and the number of ova in the tissues. GABA may be considered an adjuvant therapy to potentiate PZQ antiparasitic activity and eradicate infection-induced liver damage and oxidative stress.


Subject(s)
Anthelmintics , Schistosomiasis mansoni , Schistosomicides , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Disease Models, Animal , Liver/parasitology , Mice , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni , Schistosomiasis mansoni/pathology , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , gamma-Aminobutyric Acid/therapeutic use
8.
Niger J Clin Pract ; 25(6): 747-764, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35708415

ABSTRACT

Schistosomiasis is a neglected infectious tropical disease that is second in occurrence only to hookworm infection in sub-Saharan Africa. Presently, chemotherapy is the main method of control and treatment of this disease due to the absence of a vaccine. However, Praziquantel, which is the only chemotherapeutic option, lacks efficacy against the early developmental stages of schistosomes. A number of plant-derived compounds, including alkaloids, terpenes and phenolics, have displayed in vitro and in vivo efficacy against Schistosoma species. This review explores how the application of nanotechnology can improve the efficacy of these plant-derived schistosomicidal compounds through the use of nano-enabled drug delivery systems to improve bioavailability.


Subject(s)
Nanoparticles , Schistosomiasis , Schistosomicides , Animals , Humans , Nanoparticles/therapeutic use , Phytochemicals/therapeutic use , Schistosoma , Schistosomiasis/drug therapy , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Schistosomicides/therapeutic use
9.
Antimicrob Agents Chemother ; 65(10): e0061521, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34310210

ABSTRACT

In recent years, N,N'-diarylureas have emerged as a promising chemotype for the treatment of schistosomiasis, a parasite-caused disease that poses a considerable health burden to millions of people worldwide. Here, we report a novel series of N,N'-diarylureas featuring the scarcely explored pentafluorosulfanyl group (SF5). Low 50% inhibitory concentration (IC50) values for Schistosoma mansoni newly transformed schistosomula (0.6 to 7.7 µM) and adult worms (0.1 to 1.6 µM) were observed. Four selected compounds that were highly active in the presence of albumin (>70% at 10 µM), endowed with decent cytotoxicity profiles (selectivity index [SI] against L6 cells >8.5), and good microsomal hepatic stability (>62.5% of drug remaining after 60 min) were tested in S. mansoni-infected mice. Despite the promising in vitro worm-killing potency, none of them showed significant activity in vivo. Pharmacokinetic data showed a slow absorption, with maximal drug concentrations reached after 24 h of exposure. Finally, no direct correlation between drug exposure and in vivo activity was found. Thus, further investigations are needed to better understand the underlying mechanisms of SF5-containing N,N'-diarylureas.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Animals , Liver , Mice , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Schistosomicides/therapeutic use
10.
Antimicrob Agents Chemother ; 65(10): e0041821, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34339272

ABSTRACT

The emergence of parasites resistant to praziquantel, the only therapeutic agent, and its ineffectiveness as a prophylactic agent (inactive against the migratory/juvenile Schistosoma mansoni), make the development of new antischistosomal drugs urgent. The parasite's mitochondrion is an attractive target for drug development, because this organelle is essential for survival throughout the parasite's life cycle. We investigated the effects of 116 compounds against Schistosoma mansoni cercaria motility that have been reported to affect mitochondrion-related processes in other organisms. Next, eight compounds plus two controls (mefloquine and praziquantel) were selected and assayed against the motility of schistosomula (in vitro) and adults (ex vivo). Prophylactic and therapeutic assays were performed using infected mouse models. Inhibition of oxygen consumption rate (OCR) was assayed using Seahorse XFe24 analyzer. All selected compounds showed excellent prophylactic activity, reducing the worm burden in the lungs to less than 15% of that obtained in the vehicle control. Notably, ascofuranone showed the highest activity, with a 98% reduction of the worm burden, suggesting the potential for the development of ascofuranone as a prophylactic agent. The worm burden of infected mice with S. mansoni at the adult stage was reduced by more than 50% in mice treated with mefloquine, nitazoxanide, amiodarone, ascofuranone, pyrvinium pamoate, or plumbagin. Moreover, adult mitochondrial OCR was severely inhibited by ascofuranone, atovaquone, and nitazoxanide, while pyrvinium pamoate inhibited both mitochondrial and nonmitochondrial OCRs. These results demonstrate that the mitochondria of S. mansoni are a feasible target for drug development.


Subject(s)
Pharmaceutical Preparations , Schistosomiasis mansoni , Schistosomicides , Animals , Mice , Mitochondria , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/prevention & control , Schistosomicides/therapeutic use
11.
PLoS Pathog ; 15(10): e1007881, 2019 10.
Article in English | MEDLINE | ID: mdl-31652296

ABSTRACT

Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.


Subject(s)
Drug Resistance/genetics , Oxamniquine/therapeutic use , Schistosoma mansoni/drug effects , Schistosoma mansoni/genetics , Schistosomicides/therapeutic use , Adaptation, Physiological/genetics , Alleles , Animals , Cricetinae , Humans , Niger , Oman , Polymorphism, Single Nucleotide/genetics , Rats , Schistosomiasis mansoni/drug therapy , Senegal , Snails/parasitology , Tanzania
12.
Parasitol Res ; 120(11): 3837-3844, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34604934

ABSTRACT

Schistosomiasis is a major public health problem that afflicts more than 240 million individuals globally, particularly in poor communities. Treatment of schistosomiasis relies heavily on a single oral drug, praziquantel, and there is interest in the search for new antischistosomal drugs. This study reports the anthelmintic evaluation of carvacryl acetate, a derivative of the terpene carvacrol, against Schistosoma mansoni ex vivo and in a schistosomiasis animal model harboring either adult (patent infection) or juvenile (prepatent infection) parasites. For comparison, data obtained with gold standard antischistosomal drug praziquantel are also presented. Initially in vitro effective concentrations of 50% (EC50) and 90% (EC90) were determined against larval and adult stages of S. mansoni. In an animal with patent infection, a single oral dose of carvacryl acetate (100, 200, or 400 mg/kg) caused a significant reduction in worm burden (30-40%). S. mansoni egg production, a process responsible for both life cycle and pathogenesis, was also markedly reduced (70-80%). Similar to praziquantel, carvacryl acetate 400 mg/kg had low efficacy in pre-patent infection. In tandem, although carvacryl acetate had interesting in vitro schistosomicidal activity, the compound exhibited low efficacy in terms of reduction of worm load in S. mansoni-infected mice.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Administration, Oral , Animals , Mice , Monoterpenes , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use
13.
Molecules ; 26(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34361695

ABSTRACT

The active ingredients allicin and curcumin have a wide range of actions against fungi, bacteria, and helminths. Therefore, the study was aimed to evaluate the efficacy of allicin (AL) and curcumin (CU) as antischistosomal drugs and their biochemical effects in normal and Schistosoma mansoni-infected mice. Praziquantel (PZQ) was administrated for two successive days while AL or CU was given for two weeks from the week 7th postinfection (PI). The possible effect of different regimens on Schistosoma worms was evaluated by measuring the percentage of the recovered worms, tissue egg load, and oogram pattern. Serum alanine transaminase activity and levels of triglycerides, cholesterol, and uric acid were measured. Liver tissue malondialdehyde and reduced glutathione levels besides, the activities of glutathione-S-transferase, superoxide dismutase and catalase were assessed for the oxidative/antioxidant condition. DNA electrophoresis of liver tissue was used to indicate the degree of fragmentation. There was a significant reduction in the recovered worms and egg load, with a marked change of oogram pattern in all treated groups with PZQ, AL, and CU in comparison with infected-untreated mice. PZQ, AL, and CU prevented most of the hematological and biochemical disorders, as well as significantly improved the antioxidant capacity and enhanced DNA fragmentation in the liver tissue of schistosomiasis mice compared to the infected-untreated group. These promising results suggest that AL and CU are efficient as antischistosomal drugs, and it would be beneficial to test their combination to understand the mechanism of action and the proper period of treatment leading to the best result.


Subject(s)
Antioxidants/therapeutic use , Curcuma/chemistry , Curcumin/therapeutic use , Disulfides/therapeutic use , Garlic/chemistry , Phytotherapy/methods , Plant Extracts/therapeutic use , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Sulfinic Acids/therapeutic use , Animals , DNA Fragmentation/drug effects , Disease Models, Animal , Female , Liver/drug effects , Liver/metabolism , Male , Mice , Parasite Egg Count , Praziquantel/therapeutic use , Schistosomiasis mansoni/parasitology , Treatment Outcome
14.
J Antimicrob Chemother ; 75(10): 2925-2932, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32617557

ABSTRACT

BACKGROUND: Treatment of schistosomiasis, a neglected disease, relies on just one partially effective drug, praziquantel. We revisited the 9-acridanone hydrazone, Ro 15-5458, a largely forgotten antischistosomal lead compound. METHODS: Ro 15-5458 was evaluated in juvenile and adult Schistosoma mansoni-infected mice. We studied dose-response, hepatic shift and stage specificity. The metabolic stability of Ro 15-5458 was measured in the presence of human and mouse liver microsomes, and human hepatocytes; the latter also served to identify metabolites. Pharmacokinetic parameters were measured in naive mice. The efficacy of Ro 15-5458 was also assessed in S. haematobium-infected hamsters and S. japonicum-infected mice. RESULTS: Ro 15-5458 had single-dose ED50 values of 15 and 5.3 mg/kg in mice harbouring juvenile and adult S. mansoni infections, respectively. An ED50 value of 17 mg/kg was measured in S. haematobium-infected hamsters; however, the compound was inactive at up to 100 mg/kg in S. japonicum-infected mice. The drug-induced hepatic shift occurred between 48 and 66 h post treatment. A single oral dose of 50 mg/kg of Ro 15-5458 had high activity against all tested S. mansoni stages (1-, 7-, 14-, 21- and 49-day-old). In vitro, human hepatocytes produced N-desethyl and glucuronide metabolites; otherwise Ro 15-5458 was metabolically stable in the presence of microsomes or whole hepatocytes. The maximum plasma concentration was approximately 8.13 µg/mL 3 h after a 50 mg/kg oral dose and the half-life was approximately 4.9 h. CONCLUSIONS: Ro 15-5458 has high activity against S. mansoni and S. haematobium, yet lacks activity against S. japonicum, which is striking. This will require further investigation, as a broad-spectrum antischistosomal drug is desirable.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Acridines , Animals , Cricetinae , Hydrazones/therapeutic use , Mice , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use
15.
Exp Parasitol ; 215: 107933, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32525006

ABSTRACT

Schistosomiasis is still a public health problem. Praziquantel is the only drug available for treatment of all forms of human schistosomiasis. Although praziquantel is an effective drug against all species of human schistosomes, concerns about resistance have been raised, especially in endemic areas. A hybrid compound containing several pharmacophore within a single molecule is a promising strategy. Here, we described the anti-schistosomal effect of 4-(2-Chloroquinolin-3-yl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile (PPQ-6), a hybrid drug based on quinoline and pyridine. PPQ-6 was given as two regimens (20 or 40 mg/kg). In both regimens, PPQ-6 significantly reduced liver and spleen indices, nitric oxide production, tissue egg load, hepatic granuloma size and count, immature eggs and total worm burden especially females. Our findings suggested that PPQ-6 is a promising anti-schistosomal agent; however more research is needed to elucidate its mechanism of action and report its activity on juvenile schistosomes and other species of human schistosomes.


Subject(s)
Pyridines/pharmacology , Quinolines/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Female , Liver/parasitology , Liver/pathology , Male , Mice , Nitric Oxide/analysis , Pyridines/chemistry , Pyridines/therapeutic use , Quinolines/chemistry , Quinolines/therapeutic use , Random Allocation , Schistosomicides/chemistry , Schistosomicides/therapeutic use , Sex Factors , Spleen/parasitology , Spleen/pathology
16.
J Helminthol ; 94: e172, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32665046

ABSTRACT

Because of the increasingly emerging praziquantel resistance, there is a crucial need to develop new anti-schistosomal agents. This work was conducted to assess the therapeutic efficacy of a new benzimidazole compound (BTP-OH) in mice experimentally infected with Schistosoma mansoni. A total of 40 Swiss albino female mice were divided into an infected untreated group and three infected treated groups (using praziquantel and BTP-OH). The compound activity was evaluated through parasitological, histopathological and scanning electron microscopy studies. Praziquantel and BTP-OH at both doses significantly reduced male (75%, 42.67% and 61.08%, respectively), female (71.45%, 48.94% and 68.13%, respectively) and total worm burden (75.21%, 42.42% and 62.28%, respectively), as well as tissue egg load in the liver (71.22%, 42.12% and 66.04%, respectively). In oogram, praziquantel significantly increased the percentage of dead eggs (65.89%), while BTP-OH significantly reduced the percentage of immature eggs (30.43% and 19.64%). BTP-OH significantly diminished granuloma count (33.87% and 44.77%) and diameter (39.23% and 49.40%), and caused ultrastructural changes in the tegument of adult schistosomes. This study provides evidence for the schistosomicidal efficacy of BTP-OH. However, future studies are needed to elucidate the full mechanisms of action and effects of BTP-OH on other human schistosomes.


Subject(s)
Benzimidazoles/therapeutic use , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Animals , Benzimidazoles/chemical synthesis , Female , Liver/parasitology , Liver/pathology , Male , Mice , Parasite Egg Count , Praziquantel/therapeutic use , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni/pathology , Schistosomicides/chemical synthesis
17.
Parasitol Res ; 118(12): 3399-3408, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31655904

ABSTRACT

Schistosomiasis is a neglected chronic parasitic disease with a significant lasting morbidity. Currently, praziquantel (PZQ) is the most efficient drug for schistosomiasis worldwide. However, the possibility of the occurrence of resistance to PZQ is increasing. Therefore, there is a vital need to find new antischistosomal drugs or to increase the efficacy of the existing ones. Omeprazole is a proton pump inhibitor which is reported to have antiparasitic properties. Thus, the aim of this study was to assess the potential therapeutic effects of omeprazole in experimental Schistosoma mansoni infection either alone or in combination with PZQ. For this aim, 80 laboratory bred mice were divided into 3 groups; uninfected control, infected untreated control, and infected and treated at tenth week P.I. The last group was divided into three subgroups that received either PZQ alone, omeprazole alone, or both drugs. The effectiveness of treatment was assessed by adult worm counts, liver egg count, scanning electron microscopy of adult worms, histopathological, and immunohistochemical (GFAP) examination. There was significant reduction of adult worm counts, liver egg counts, size, diameter of hepatic granulomas, hepatic fibrosis, and GFAP expression in the group that received combined treatment as compared to PZQ group. Moreover, the tegumental changes were more evident in the group that received combined treatment. In conclusion, the administration of omeprazole with PZQ improved the efficacy of PZQ in the treatment of Schistosomiasis mansoni.


Subject(s)
Omeprazole/therapeutic use , Praziquantel/therapeutic use , Proton Pump Inhibitors/therapeutic use , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Animals , Drug Therapy, Combination , Granuloma/parasitology , Liver Cirrhosis/parasitology , Male , Mice , Parasite Egg Count , Parasite Load , Schistosomiasis mansoni/parasitology
18.
Parasitol Res ; 118(5): 1625-1631, 2019 May.
Article in English | MEDLINE | ID: mdl-30798369

ABSTRACT

Schistosomiasis is a neglected tropical disease affecting 220 million people worldwide. Praziquantel has proven to be effective against this parasitic disease, though there are increasing concerns regarding tolerance/resistance that calls for new drugs. Repurposing already existing and well-known drugs has been a desirable approach since it reduces time, costs, and ethical concerns. The anti-cancer drug tamoxifen (TAM) has been used worldwide for several decades to treat and prevent breast cancer. Previous reports stated that TAM affects Schistosoma hormonal physiology; however, no controlled schistosomicidal in vivo assays have been conducted. In this work, we evaluated the effect of TAM on female and male Schistosoma mansoni morphology, motility, and egg production. We further assessed worm survival and egg production in S. mansoni-infected mice. TAM induced morphological alterations in male and female parasites, as well as in eggs in vitro. Furthermore, in our in vivo experiments, one single dose of intraperitoneal TAM citrate reduced the total worm burden by 73% and led to a decrease in the amount of eggs in feces and low percentages of immature eggs in the small intestine wall. Eggs obtained from TAM citrate-treated mice were reduced in size and presented hyper-vacuolated structures. Our results suggest that TAM may be repurposed as a therapeutic alternative against S. mansoni infections.


Subject(s)
Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use , Tamoxifen/therapeutic use , Animals , Disease Models, Animal , Drug Resistance/physiology , Feces/parasitology , Female , Male , Mice , Mice, Inbred BALB C , Praziquantel/therapeutic use , Schistosomiasis mansoni/parasitology
19.
Parasitol Res ; 118(2): 505-516, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30617587

ABSTRACT

Schistosomiasis is a tropical neglected disease whose socioeconomic impact is surpassed only by malaria. Until recently, praziquantel (PZQ) has been the only available drug, raising concerns that tolerant/resistant strains may appear. Since the discovery of the schistosomicidal potential of artemisinin (ART), new derivatives have been produced and evaluated. In this work, we evaluated the activity of ART derivatives against Schistosoma mansoni, both in vitro and in vivo. In the in vitro assay, worm survival, oviposition, and morphological alterations were evaluated. Further analysis of morphological alterations and membrane integrity was conducted using scanning electron microscopy and a cell-permeable, benzimidazole dye (Hoescht 33258) that binds to the minor groove of double stranded DNA. For the in vivo assay, artesunic acid (AcART) and dihydroartemisinin acetate (AcDQHS) were selected, since they showed the best in vitro results. Infected mice treated 21, 45, or 60 days post-infection (dpi), with a concentration of 100 mg/kg of either AcART or AcDQHS, showed a significant worm reduction (particularly in females), fewer eggs eliminated in feces, and a decrease of immature eggs in the intestinal tissues. Our results indicate that AcART and AcDQHS have some schistosomicidal activity against juvenile and adult stages of S. mansoni.


Subject(s)
Artemisinins/pharmacology , Artemisinins/therapeutic use , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Animals , Cell Line , Feces/parasitology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Oviposition/drug effects , Schistosoma mansoni/ultrastructure , Schistosomiasis mansoni/drug therapy
20.
Parasitol Res ; 118(3): 881-890, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30729300

ABSTRACT

Schistosomiasis caused by different species of schistosome parasites is one of the most debilitating helminthic diseases of humans worldwide. For decades, chemotherapy is the main method of controlling schistosomiasis. However, the fear of drug resistance has motivated the search for alternatives. It has been demonstrated that the ABL kinase inhibitor imatinib affected the development and survival of Schistosoma mansoni in vitro; however, there is still lack of information on whether imatinib also affects other schistosome species such as Schistosoma japonicum. In the present study, the anti-schistosomal potency of imatinib on adult S. japonicum was investigated in vitro, and the results showed that imatinib had a significant impact on various physiological processes of S. japonicum adult worms. Besides its negative effects on worm motility, pairing stability, and gonad development, imatinib caused pathological changes in the gastrodermis as well as the death of the parasite. Our findings suggest that imatinib is an intriguing candidate for further development as an option to fight S. japonicum.


Subject(s)
Imatinib Mesylate/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Schistosoma japonicum/drug effects , Schistosomiasis japonica/drug therapy , Schistosomicides/therapeutic use , Amino Acid Sequence , Animals , Drug Resistance/genetics , Female , Gastropoda/parasitology , Humans , Male , Mice , Parasitic Sensitivity Tests , Schistosoma mansoni/drug effects , Schistosomiasis japonica/parasitology , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL