Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 710
Filter
Add more filters

Publication year range
1.
Nature ; 596(7870): 138-142, 2021 08.
Article in English | MEDLINE | ID: mdl-34290405

ABSTRACT

In early mitosis, the duplicated chromosomes are held together by the ring-shaped cohesin complex1. Separation of chromosomes during anaphase is triggered by separase-a large cysteine endopeptidase that cleaves the cohesin subunit SCC1 (also known as RAD212-4). Separase is activated by degradation of its inhibitors, securin5 and cyclin B6, but the molecular mechanisms of separase regulation are not clear. Here we used cryogenic electron microscopy to determine the structures of human separase in complex with either securin or CDK1-cyclin B1-CKS1. In both complexes, separase is inhibited by pseudosubstrate motifs that block substrate binding at the catalytic site and at nearby docking sites. As in Caenorhabditis elegans7 and yeast8, human securin contains its own pseudosubstrate motifs. By contrast, CDK1-cyclin B1 inhibits separase by deploying pseudosubstrate motifs from intrinsically disordered loops in separase itself. One autoinhibitory loop is oriented by CDK1-cyclin B1 to block the catalytic sites of both separase and CDK19,10. Another autoinhibitory loop blocks substrate docking in a cleft adjacent to the separase catalytic site. A third separase loop contains a phosphoserine6 that promotes complex assembly by binding to a conserved phosphate-binding pocket in cyclin B1. Our study reveals the diverse array of mechanisms by which securin and CDK1-cyclin B1 bind and inhibit separase, providing the molecular basis for the robust control of chromosome segregation.


Subject(s)
CDC2 Protein Kinase/chemistry , CDC2 Protein Kinase/metabolism , Cyclin B1/chemistry , Cyclin B1/metabolism , Securin/chemistry , Securin/metabolism , Separase/chemistry , Separase/metabolism , Amino Acid Motifs , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/ultrastructure , CDC2-CDC28 Kinases/chemistry , CDC2-CDC28 Kinases/metabolism , CDC2-CDC28 Kinases/ultrastructure , Cell Cycle Proteins/metabolism , Chromosome Segregation , Cryoelectron Microscopy , Cyclin B1/ultrastructure , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Phosphoserine/metabolism , Protein Binding , Protein Domains , Securin/ultrastructure , Separase/antagonists & inhibitors , Separase/ultrastructure , Substrate Specificity
2.
Nature ; 580(7804): 536-541, 2020 04.
Article in English | MEDLINE | ID: mdl-32322060

ABSTRACT

Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin1-3. Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin1. In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions4,5. Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma6,7, is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin8,9, SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31comet liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


Subject(s)
Cell Cycle Checkpoints/physiology , Cell Cycle Proteins/metabolism , Mad2 Proteins/metabolism , Securin , Separase/antagonists & inhibitors , ATPases Associated with Diverse Cellular Activities/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/metabolism , Cell Line , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Humans , Protein Binding , Securin/metabolism , Separase/metabolism , Cohesins
3.
PLoS Genet ; 18(9): e1010397, 2022 09.
Article in English | MEDLINE | ID: mdl-36108046

ABSTRACT

The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase. Early studies have recognized that the SAC should be silenced within minutes to enable rapid APC/C activation and synchronous segregation of chromosomes once all kinetochores are properly attached, but the underlying silencers are still being elucidated. Here, we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows the degradation of cyclin B and securin, and eventually delays anaphase entry in cells released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon SAC activation. We propose that this association may fend off excessive and prolonged MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy of APC/C activation, which is actively required for maintaining cell viability upon recovery from the inhibition of APC/C by spindle checkpoint.


Subject(s)
Cell Cycle Proteins , Thiabendazole , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints/genetics , Securin/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Thiabendazole/metabolism
4.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34463328

ABSTRACT

Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.


Subject(s)
Brain/embryology , Genes, Modifier/physiology , Hedgehog Proteins/metabolism , Signal Transduction , Animals , Brain/metabolism , Cilia/metabolism , Disease Models, Animal , Heart Defects, Congenital/genetics , Hedgehog Proteins/genetics , Holoprosencephaly/genetics , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Mice , Mutation , Neuroepithelial Cells/metabolism , Penetrance , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Securin/genetics , Securin/metabolism
5.
Histochem Cell Biol ; 162(6): 447-464, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39093409

ABSTRACT

Oocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I. Here we found that MEIKIN is a maternal protein that was highly expressed in mouse oocytes before the metaphase I (MI) stage, but became degraded by the MII stage and dramatically reduced after fertilization. Strikingly, MEIKIN underwent phosphorylation modification after germinal vesicle breakdown (GVBD), indicating its possible function in subsequent cellular event regulation. We further showed that MEIKIN phosphorylation was mediated by PLK1 at its carboxyl terminal region and its C-terminus was its key functional domain. To clarify the biological significance of meikin degradation during later stages of oocyte maturation, exogenous expression of MEIKIN was employed, which showed that suppression of MEIKIN degradation resulted in chromosome misalignment, cyclin B1 and Securin degradation failure, and MI arrest through a spindle assembly checkpoint (SAC)-independent mechanism. Exogenous expression of MEIKIN also inhibited metaphase II (MII) exit and early embryo development. These results indicate that proper MEIKIN expression level and its C-terminal phosphorylation by PLK1 are critical for regulating the metaphase-anaphase transition in meiotic oocyte. The findings of this study are important for understanding the regulation of chromosome segregation and the prevention meiotic abnormality.


Subject(s)
Cell Cycle Proteins , Cyclin B1 , Meiosis , Metaphase , Oocytes , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Securin , Animals , Proto-Oncogene Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/metabolism , Mice , Oocytes/metabolism , Oocytes/cytology , Phosphorylation , Female , Cyclin B1/metabolism , Securin/metabolism , Anaphase , Mice, Inbred ICR , Mesothelin
6.
J Biol Chem ; 298(10): 102405, 2022 10.
Article in English | MEDLINE | ID: mdl-35988650

ABSTRACT

Cellular senescence is a form of irreversible growth arrest that cancer cells evade. The cell division cycle protein 20 homolog (Cdc20) is a positive regulator of cell division, but how its dysregulation may relate to senescence is unclear. Here, we find that Cdc20 mRNA and protein expression are downregulated in stress-induced premature senescent lung fibroblasts in a p53-dependent manner. Either Cdc20 downregulation or inhibition of anaphase-promoting complex/cyclosome (APC/C) is sufficient to induce premature senescence in lung fibroblasts, while APC/C activation inhibits stress-induced premature senescence. Mechanistically, we show both Cdc20 downregulation and APC/C inhibition induce premature senescence through glycogen synthase kinase (GSK)-3ß-mediated phosphorylation and downregulation of securin expression. Interestingly, we determined Cdc20 expression is upregulated in human lung adenocarcinoma. We find that downregulation of Cdc20 in non-small cell lung cancer (NSCLC) cells is sufficient to inhibit cell proliferation and growth in soft agar and to promote apoptosis, but not senescence, in a manner dependent on downregulation of securin following GSK-3ß-mediated securin phosphorylation. Similarly, we demonstrate securin expression is downregulated and cell viability is inhibited in NSCLC cells following inhibition of APC/C. Furthermore, we show chemotherapeutic drugs downregulate both Cdc20 and securin protein expression in NSCLC cells. Either Cdc20 downregulation by siRNA or APC/C inhibition sensitize, while securin overexpression inhibits, chemotherapeutic drug-induced NSCLC cell death. Together, our findings provide evidence that Cdc20/APC/C/securin-dependent signaling is a key regulator of cell survival, and its disruption promotes premature senescence in normal lung cells and induces apoptosis in lung cancer cells that have bypassed the senescence barrier.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cellular Senescence , Lung Neoplasms , Humans , Anaphase-Promoting Complex-Cyclosome/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Securin/genetics , Securin/metabolism
7.
Nature ; 542(7640): 255-259, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28146474

ABSTRACT

Separase is a cysteine protease with a crucial role in the dissolution of cohesion among sister chromatids during chromosome segregation. In human tumours separase is overexpressed, making it a potential target for drug discovery. The protease activity of separase is strictly regulated by the inhibitor securin, which forms a tight complex with separase and may also stabilize this enzyme. Separases are large, 140-250-kilodalton enzymes, with an amino-terminal α-helical region and a carboxy-terminal caspase-like catalytic domain. Although crystal structures of the C-terminal two domains of separase and low-resolution electron microscopy reconstructions of the separase-securin complex have been reported, the atomic structures of full-length separase and especially the complex with securin are unknown. Here we report crystal structures at up to 2.6 Å resolution of the yeast Saccharomyces cerevisiae separase-securin complex. The α-helical region of separase (also known as Esp1) contains four domains (I-IV), and a substrate-binding domain immediately precedes the catalytic domain and has tight associations with it. The separase-securin complex assumes a highly elongated structure. Residues 258-373 of securin (Pds1), named the separase interaction segment, are primarily in an extended conformation and traverse the entire length of separase, interacting with all of its domains. Most importantly, residues 258-269 of securin are located in the separase active site, illuminating the mechanism of inhibition. Biochemical studies confirm the structural observations and indicate that contacts outside the separase active site are crucial for stabilizing the complex, thereby defining an important function for the helical region of separase.


Subject(s)
Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology , Securin/chemistry , Securin/metabolism , Separase/antagonists & inhibitors , Separase/chemistry , Catalytic Domain , Crystallography, X-Ray , Enzyme Stability , Models, Molecular , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Separase/metabolism
8.
Mol Cell ; 58(3): 495-506, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25921067

ABSTRACT

Ring-shaped cohesin keeps sister chromatids paired until cleavage of its Scc1/Rad21 subunit by separase triggers chromosome segregation in anaphase. Vertebrate separase is held inactive by mutually exclusive binding to securin or Cdk1-cyclin B1 and becomes unleashed only upon ubiquitin-dependent degradation of these regulators. Although most separase is usually found in association with securin, this anaphase inhibitor is dispensable for murine life while Cdk1-cyclin B1-dependent control of separase is essential. Here, we show that securin-independent inhibition of separase by Cdk1-cyclin B1 in early mitosis requires the phosphorylation-specific peptidyl-prolyl cis/trans isomerase Pin1. Furthermore, isomerization of previously securin-bound separase at the metaphase-to-anaphase transition renders it resistant to re-inhibition by residual securin. At the same time, isomerization also limits the half-life of separase's proteolytic activity, explaining how cohesin can be reloaded onto telophase chromatin in the absence of securin and cyclin B1 without being cleaved.


Subject(s)
Chromosome Segregation/genetics , Gene Expression Regulation, Enzymologic , Peptidylprolyl Isomerase/genetics , Separase/genetics , Anaphase/genetics , CDC2 Protein Kinase , Chromatids/genetics , Cyclin B1/chemistry , Cyclin B1/genetics , Cyclin B1/metabolism , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , HEK293 Cells , Humans , Immunoblotting , Metaphase/genetics , Microscopy, Fluorescence , Mitosis/genetics , Models, Genetic , Models, Molecular , Mutation , NIMA-Interacting Peptidylprolyl Isomerase , Peptidylprolyl Isomerase/metabolism , Protein Binding , Protein Conformation , RNA Interference , Securin/genetics , Securin/metabolism , Separase/chemistry , Separase/metabolism
9.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203427

ABSTRACT

Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.


Subject(s)
Carcinogenesis , Chromium , Chromosomal Instability , Humans , Securin/genetics , Separase
10.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069214

ABSTRACT

Seminoma is the most common testicular cancer. Pituitary tumor-transforming gene 1 (PTTG1) is a securin showing oncogenic activity in several tumors. We previously demonstrated that nuclear PTTG1 promotes seminoma tumor invasion through its transcriptional activity on matrix metalloproteinase 2 (MMP-2) and E-cadherin (CDH1). We wondered if specific interactors could affect its subcellular distribution. To this aim, we investigated the PTTG1 interactome in seminoma cell lines showing different PTTG1 nuclear levels correlated with invasive properties. A proteomic approach upon PTTG1 immunoprecipitation uncovered new specific securin interactors. Western blot, confocal microscopy, cytoplasmic/nuclear fractionation, sphere-forming assay, and Atlas database interrogation were performed to validate the proteomic results and to investigate the interplay between PTTG1 and newly uncovered partners. We observed that spectrin beta-chain (SPTBN1) and PTTG1 were cofactors, with SPTBN1 anchoring the securin in the cytoplasm. SPTBN1 downregulation determined PTTG1 nuclear translocation, promoting its invasive capability. Moreover, a PTTG1 deletion mutant lacking SPTBN1 binding was strongly localized in the nucleus. The Atlas database revealed that seminomas that contained higher nuclear PTTG1 levels showed significantly lower SPTBN1 levels in comparison to non-seminomas. In human seminoma specimens, we found a strong PTTG1/SPTBN1 colocalization that decreases in areas with nuclear PTTG1 distribution. Overall, these results suggest that SPTBN1, along with PTTG1, is a potential prognostic factor useful in the clinical management of seminoma.


Subject(s)
Seminoma , Testicular Neoplasms , Humans , Male , Cell Line, Tumor , Cytoplasm/metabolism , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 2/metabolism , Proteomics , Securin/genetics , Securin/metabolism , Seminoma/genetics , Spectrin/genetics , Testicular Neoplasms/genetics
11.
J Cell Sci ; 133(14)2020 07 29.
Article in English | MEDLINE | ID: mdl-32591482

ABSTRACT

PP2ACdc55 (the form of protein phosphatase 2A containing Cdc55) regulates cell cycle progression by reversing cyclin-dependent kinase (CDK)- and polo-like kinase (Cdc5)-dependent phosphorylation events. In S. cerevisiae, Cdk1 phosphorylates securin (Pds1), which facilitates Pds1 binding and inhibits separase (Esp1). During anaphase, Esp1 cleaves the cohesin subunit Scc1 and promotes spindle elongation. Here, we show that PP2ACdc55 directly dephosphorylates Pds1 both in vivo and in vitro Pds1 hyperphosphorylation in a cdc55 deletion mutant enhanced the Pds1-Esp1 interaction, which played a positive role in Pds1 nuclear accumulation and in spindle elongation. We also show that nuclear PP2ACdc55 plays a role during replication stress to inhibit spindle elongation. This pathway acted independently of the known Mec1, Swe1 or spindle assembly checkpoint (SAC) checkpoint pathways. We propose a model where Pds1 dephosphorylation by PP2ACdc55 disrupts the Pds1-Esp1 protein interaction and inhibits Pds1 nuclear accumulation, which prevents spindle elongation, a process that is elevated during replication stress.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Securin , Separase , Spindle Apparatus/metabolism
12.
Biochem Biophys Res Commun ; 620: 173-179, 2022 09 10.
Article in English | MEDLINE | ID: mdl-35803173

ABSTRACT

Separase is a giant cysteine protease and has multiple crucial functions. The most well-known substrate of separase is the kleisin subunit of cohesin, the cleavage of which triggers chromosome segregation during cell division (Uhlmann et al., 1999; Kamenz and Hauf, 2016) [1,2]. Recently, separase has also been found to cleave MCL-1 or BCL-XL proteins to trigger apoptosis (Hellmuth and Stemmann, 2020) [3]. Although substrate recognition through a short sequence right upstream of the cleavage site is well established, recent studies suggested that sequence elements outside this minimum cleavage site are required for optimal cleavage activity and specificity (Rosen et al., 2019; Uhlmann et al., 2000) [4,5]. However, the sequences and their underlying mechanism are largely unknown. To further explore the substrate determinants and recognition mechanism, we carried out sequence alignments and found a conserved motif downstream of the cleavage site in budding yeast. Using Alphafold2 and molecular dynamics simulations, we found this motif is recognized by separase in a conserved cleft near the binding groove of its inhibitor securin. Their binding is mutually exclusive and requires conformation changes of separase. These findings provide deeper insights into substrate recognition and activation of separase, and paved the way for discovering more substrates of separase.


Subject(s)
Saccharomyces cerevisiae , Saccharomycetales , Cell Cycle Proteins/metabolism , Chromosome Segregation , Endopeptidases/metabolism , Molecular Dynamics Simulation , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism , Securin/chemistry , Securin/genetics , Securin/metabolism , Separase/genetics
13.
J Recept Signal Transduct Res ; 42(1): 43-51, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33148101

ABSTRACT

BACKGROUND: Sinonasal squamous cell carcinoma (SNSCC) is a main subtype of sinonasal malignancy with unclear pathogenesis. microRNAs (miRNAs) are involved in SNSCC progression. Nevertheless, the role and mechanism of miR-362-3p in SNSCC development are unclear. METHODS: The SNSCC tissues (n = 23) and normal sinonasal samples (n = 13) were harvested. SNSCC cell line RPMI-2650 cells were transfected using Lipofectamine 3000. miR-362-3p and pituitary tumor-transforming gene 1 (PTTG1) were determined by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation was analyzed via Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell migration and invasion was assessed using wound healing assay and transwell assay. Epithelial-mesenchymal transition (EMT)-associated protein (E-cadherin, N-cadherin and Vimentin) levels were measured via western blot. The binding relationship was analyzed via bioinformatic analysis and dual-luciferase reporter assay. RESULTS: miR-362-3p abundance was decreased in SNSCC samples. miR-362-3p addition constrained cell proliferation, migration, invasion and EMT, but miR-362-3p knockdown played an opposite effect. PTTG1 was targeted and negatively modulated by miR-362-3p. PTTG1 abundance was elevated in SNSCC samples. PTTG1 overexpression mitigated miR-362-3p-modulated suppression of cell proliferation, migration, invasion and EMT in SNSCC cells. CONCLUSION: miR-362-3p repressed cell proliferation, migration, invasion and EMT in SNSCC via targeting PTTG1.


Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , Nose Neoplasms , Securin/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Nose Neoplasms/genetics , Oncogenes
14.
Toxicol Appl Pharmacol ; 454: 116255, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36162444

ABSTRACT

Disrupted cell cycle progression underlies the molecular pathogenesis of multiple diseases. Chronic exposure to inorganic arsenic (iAs) is a global health issue leading to multi-organ cancerous and non-cancerous diseases. Exposure to supratherapeutic concentrations of iAs causes cellular accumulation in G2 or M phase of the cell cycle in multiple cell lines by inducing cyclin B1 expression. It is not clear if iAs exposure at doses corresponding to serum levels of chronically exposed populations (∼100 nM) has any effect on cell cycle distribution. In the present study we investigated if environmentally relevant iAs exposure induced cell cycle disruption and mechanisms thereof employing two human keratinocyte cell lines (HaCaT and Ker-CT), flow cytometry, immunoblots and quantitative real-time PCR (qRT-PCR). iAs exposure (100 nM; 24 h) led to mitotic accumulation of cells in both cell lines, along with the stabilization of ANAPC11 ubiquitination targets cyclin B1 and securin, without affecting their steady state mRNA levels. This result suggested that induction of cyclin B1 and securin is modulated at the level of protein degradation. Moreover, zinc supplementation successfully prevented iAs-induced mitotic accumulation and stabilization of cyclin B1 and securin without affecting their mRNA levels. Together, these data suggest that environmentally relevant iAs exposure leads to mitotic accumulation possibly by displacing zinc from the RING finger subunit of anaphase promoting complex/cyclosome (ANAPC11), the cell cycle regulating E3 ubiquitin ligase. This early cell cycle disruptive effect of environmentally relevant iAs concentration could underpin the molecular pathogenesis of multiple diseases associated with chronic iAs exposure.


Subject(s)
Apc11 Subunit, Anaphase-Promoting Complex-Cyclosome , Arsenic , Anaphase-Promoting Complex-Cyclosome , Arsenic/toxicity , Cell Line , Cyclin B1/genetics , Dietary Supplements , Humans , Keratinocytes , RNA, Messenger , Securin , Ubiquitin-Protein Ligases , Zinc
15.
BMC Cancer ; 22(1): 713, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768832

ABSTRACT

BACKGROUND: Pituitary tumor transforming gene-1 (PTTG1) transcription factor is identified as carcinogenic and associated with tumor invasiveness, but its role in bladder cancer (BLCA) remains obscure. This research is intended to analyze the aberrant expression and clinical significance of PTTG1 in BLCA, explore the relationship between PTTG1 and tumor microenvironment characteristics and predict its potential transcriptional activity in BLCA tissue. METHODS: We compared the expression discrepancy of PTTG1 mRNA in BLCA and normal bladder tissue, using the BLCA transcriptomic datasets from GEO, ArrayExpress, TCGA, and GTEx. In-house immunohistochemical staining was implemented to determine the PTTG1 protein intensity. The prognostic value of PTTG1 was evaluated using the Kaplan-Meier Plotter. CRISPR screen data was utilized to estimate the effect PTTG1 interference has on BLCA cell lines. We predicted the abundance of the immune cells in the BLCA tumor microenvironment using the microenvironment cell populations-counter and ESTIMATE algorithms. Single-cell RNA sequencing data was applied to identify the major cell types in BLCA, and the dynamics of BLCA progression were revealed using pseudotime analysis. PTTG1 target genes were predicted by CistromeDB. RESULTS: The elevated expression level of PTTG1 was confirmed in 1037 BLCA samples compared with 127 non-BLCA samples, with a standardized mean difference value of 1.04. Higher PTTG1 expression status exhibited a poorer BLCA prognosis. Moreover, the PTTG1 Chronos genetic effect scores were negative, indicating that PTTG1 silence may inhibit the proliferation and survival of BLCA cells. With PTTG1 mRNA expression level increasing, higher natural killer, cytotoxic lymphocyte, and monocyte lineage cell infiltration levels were observed. A total of four candidate targets containing CHEK2, OCIAD2, UBE2L3, and ZNF367 were determined ultimately. CONCLUSIONS: PTTG1 mRNA over-expression may become a potential biomarker for BLCA prognosis. Additionally, PTTG1 may correlate with the BLCA tumor microenvironment and exert transcriptional activity by targeting CHEK2, OCIAD2, UBE2L3, and ZNF367 in BLCA tissue.


Subject(s)
Pituitary Neoplasms , Securin , Urinary Bladder Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Kruppel-Like Transcription Factors/metabolism , Neoplasm Proteins/genetics , Oncogenes , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Prognosis , RNA, Messenger/genetics , Securin/biosynthesis , Securin/genetics , Transcription Factors/genetics , Tumor Microenvironment/genetics
16.
Hum Genomics ; 15(1): 39, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34187556

ABSTRACT

BACKGROUND: Liver cancer is one of the most common cancers and causes of cancer death worldwide. The objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in liver cancer via integrated analysis. METHODS: GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb. RESULTS: In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. The CDK1, HMMR, and TTK had close interaction with anticancer agents. CONCLUSIONS: The CDK1, HMMR, PTTG1, and TTK were hub genes in liver cancer; hence, they might be potential biomarkers for diagnosis, prognosis, and targeted therapy of liver cancer.


Subject(s)
CDC2 Protein Kinase/genetics , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/genetics , Extracellular Matrix Proteins/genetics , Hyaluronan Receptors/genetics , Liver Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Securin/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Databases, Genetic , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Neoplasm Proteins/genetics , Prognosis , Protein Interaction Maps/genetics , Transcriptome/genetics
17.
Mutagenesis ; 37(3-4): 182-190, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36112508

ABSTRACT

Research over the years revealed that precocious anaphase, securin overexpression, and genome instability in both target and nontarget cells are significantly associated with the increased risk of areca nut (AN) and lime-induced oral, esophageal, and gastric cancers. Further, hyperphosphorylation of Rb and histone H3 epigenetic modifications both globally and in the promoter region of the securin gene were demonstrated after AN + lime exposure. This study aims whether the extract of raw AN + lime relaxes chromatin structure which further facilitates the histone H3 epigenetic modifications during the initial phase of carcinogenesis. Three groups of mice (10 in each group) were used. The treated group consumed 1 mg/day/mice of AN extract with lime ad libitum in the drinking water for 60 days. The dose was increased by 1 mg every 60 days. Isolated nuclei were digested with DNaseI and 2 kb and below DNA was eluted from the agarose gel, purified and PCR amplified by using securin and GAPDH primers. Securin and E2F1 expression, pRb phosphorylation, and histone epigenetic modifications were analyzed by immunohistochemistry. The number of DNA fragments within 2 kb in size after DNaseI treatment was higher significantly in AN + lime exposed tissue samples than in the untreated one. The PCR result showed that the number of fragments bearing securin gene promoter and GAPDH gene was significantly higher in AN + lime exposed DNaseI-treated samples. Immunohistochemistry data revealed increased Rb hyperphosphorylation, upregulation of E2F1, and securin in the AN + lime-treated samples. Increased trimethylation of histone H3 lysine 4 and acetylation of H3 lysine 9 and 18 were observed globally in the treated samples. Therefore, the results of this study have led to the hypothesis that AN + lime exposure relaxes the chromatin, changes the epigenetic landscape, and deregulates the Rb-E2F1 circuit which might be involved in the upregulation of securin and some other proto-oncogenes that might play an important role in the initial phases of AN + lime mediated carcinogenesis.


Subject(s)
Chromatin , Nuts , Plant Extracts , Animals , Mice , Acetylation , Areca/chemistry , Carcinogenesis , Chromatin/genetics , Histones/genetics , Histones/metabolism , Lysine/genetics , Nuts/chemistry , Plant Extracts/pharmacology , Securin/genetics , Securin/metabolism
18.
Liver Int ; 42(3): 651-662, 2022 03.
Article in English | MEDLINE | ID: mdl-35050550

ABSTRACT

BACKGROUND AND AIMS: PTTG1 is almost undetectable in adult livers but is highly expressed in hepatocarcinoma. While little is known about its involvement in liver fibrosis, PTTG1 expression is associated with DLK1. We assessed the role of the PTTG1/DLK1 pathway in fibrosis progression and the potential therapeutic effect of PTTG1 silencing in fibrosis. METHODS: Pttg1 and Dlk1 were studied in liver and isolated cell populations of control and fibrotic rats and in human liver biopsies. The fibrotic molecular signature was analysed in Pttg1-/- and Pttg1+/+ fibrotic mice. Finally, Pttg1 silencing was evaluated in rats as a novel antifibrotic therapy. RESULTS: Pttg1 and Dlk1 mRNA selectively increased in fibrotic rats paralleling fibrosis progression. Serum DLK1 concentrations correlated with hepatic collagen content and systemic and portal haemodynamics. Human cirrhotic livers showed greater PTTG1 and DLK1 transcript abundance than non-cirrhotic, and reduced collagen was observed in Pttg1 Pttg1-/- mice. The liver fibrotic molecular signature revealed lower expression of genes related to extracellular matrix remodelling including Mmp8 and 9 and Timp4 and greater eotaxin and Mmp13 than fibrotic Pttg1+/+ mice. Finally, interfering Pttg1 resulted in reduced liver fibrotic area, lower α-Sma and decreased portal pressure than fibrotic animals. Furthermore, Pttg1 silencing decreased the transcription of Dlk1, collagens I and III, Pdgfrß, Tgfrß, Timp1, Timp2 and Mmp2. CONCLUSIONS: Pttg1/Dlk1 are selectively overexpressed in the cirrhotic liver and participate in ECM turnover regulation. Pttg1 disruption decreases Dlk1 transcription and attenuates collagen deposition. PTTG1/DLK1 signalling is a novel pathway for targeting the progression of liver fibrosis.


Subject(s)
Calcium-Binding Proteins , Intercellular Signaling Peptides and Proteins , Membrane Proteins , Pituitary Neoplasms , Securin , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Fibrosis , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Oncogenes , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Rats , Securin/genetics , Securin/metabolism
19.
Exp Cell Res ; 405(2): 112657, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34081985

ABSTRACT

Checkpoint kinases (Chk) 1/2 are known for DNA damage checkpoint and cell cycle control in somatic cells. According to recent findings, the involvement of Chk1 in oocyte meiotic resumption and Chk2 is regarded as an essential regulator for progression at the post metaphase I stage (MI). In this study, AZD7762 (Chk1/2 inhibitor) and SB218078 (Chk1 inhibitor) were used to uncover the joint roles of Chk1/2 and differentiate the importance of Chk1 and Chk2 during oocyte meiotic maturation. Inhibition of Chk1/2 or Chk1 alone had no significant effect on germinal vesicle breakdown (GVBD) but significantly inhibited the first polar body (PB1). Interestingly, inhibition of Chk1 alone could not increase or completely block the extrusion of PB1 like Chk1/2 inhibition. Also, Chk1/2 inhibition resulted in defective meiotic spindle organization and chromosome condensation both in MI and metaphase II (MII) stages of oocytes. The location of γ-tubulin and Securin were abnormal or missing, while P38 MAPK was activated by Chk1/2 inhibition. Meanwhile, Chk1/2 inhibition reduced the percentage of the second polar body extrusion and pronuclear formation. In conclusion, our results further understand the functions and regulatory mechanism of Chk1/2 during oocyte meiotic maturation.


Subject(s)
Chromosomes/metabolism , Meiosis/physiology , Metaphase/physiology , Oocytes/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Mice , Securin/metabolism , Tubulin/metabolism
20.
Nature ; 532(7597): 131-4, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27027290

ABSTRACT

Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.


Subject(s)
Cell Cycle Proteins/metabolism , Chaetomium/enzymology , Chromosomal Proteins, Non-Histone/metabolism , Separase/chemistry , Separase/metabolism , Amino Acid Sequence , Binding, Competitive/drug effects , Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Chromosome Segregation , Crystallography, X-Ray , Models, Molecular , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Proteolysis , Proto-Oncogene Proteins/metabolism , Securin/chemistry , Securin/genetics , Securin/metabolism , Securin/pharmacology , Separase/antagonists & inhibitors , Structure-Activity Relationship , Substrate Specificity/genetics , Cohesins , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL