Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 740
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279229

ABSTRACT

Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.


Subject(s)
Photosynthesis , Sodium Chloride , Solanum tuberosum , Plant Leaves , Plant Roots , Salinity , Sodium , Sodium Chloride/toxicity
2.
Environ Res ; 231(Pt 1): 116089, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37172678

ABSTRACT

Seed priming is an effective and novel technique and the use of eco-friendly biological agents improves the physiological functioning in the vegetative stage of plants. This procedure ensures productivity and acquired stress resilience in plants against adverse conditions without contaminating the environment. Though the mechanisms of bio-priming-triggered alterations have been widely explained under induvial stress conditions, the interaction of combined stress conditions on the defense system and the functionality of photosynthetic apparatus in the vegetative stage after the inoculation to seeds has not been fully elucidated. After Bacillus pumilus inoculation to wheat seeds (Triticum aestivum), three-week-old plants were hydroponically exposed to the alone and combination of salt (100 mM NaCl) and 200 µM sodium arsenate (Na2HAsO4·7H2O, As) for 72 h. Salinity and As pollutant resulted in a decline in growth, water content, gas exchange parameters, fluorescence kinetics and performance of photosystem II (PSII). On the other hand, the seed inoculation against stress provided the alleviation of relative growth rate (RGR), relative water content (RWC) and chlorophyll fluorescence. Since there was no effective antioxidant capacity, As and/or salinity caused the induction of H2O2 accumulation and thiobarbituric acid reactive substances content (TBARS) in wheat . The inoculated seedlings had a high activity of superoxide dismutase (SOD) under stress. B. pumilis decreased the NaCl-induced toxic H2O2 levels by increasing peroxidase (POX) and enzymes/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle. In the presence of As exposure, the inoculated plants exhibited an induction in CAT activity. On the other hand, for H2O2 scavenging, the improvement in the AsA-GSH cycle was observed in bacterium priming plants plus the combined stress treatment. Since B. pumilus inoculation reduced H2O2 levels against all stress treatments, lipid peroxidation subsequently decreased in wheat leaves. The findings obtained from our study explained that the seed inoculation with B. pumilus provided an activation in the defense system and protection in growth, water status, and gas exchange regulation in wheat plants against the combination of salt and As.


Subject(s)
Arsenic , Bacillus pumilus , Antioxidants/pharmacology , Triticum , Sodium Chloride/toxicity , Arsenic/pharmacology , Water , Hydrogen Peroxide , Fluorescence , Kinetics , Chlorophyll/pharmacology
3.
Ecotoxicology ; 32(6): 802-810, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37561277

ABSTRACT

Soil contamination by cadmium (Cd) and degradation by salinity are likely to become one of the most important problems hindering food production and human health. However, their combined effect on crops is still ambiguous. A hydroponic study was made to investigate the separate and combined exposure of 100 µM Cd and 150 µM NaCl on soybeans (Glycine max L.) growth, photosynthetic pigment, and antioxidant systems for 7 days. Both Cd and NaCl, applied separately decreased the seedlings growth, chlorophyll contents and caused oxidative stress. However, the toxic effects of salinity applied alone were more pronounced. Interestingly, combined exposure of Cd and NaCl induced higher decreases in all growth parameters and lipid peroxidation than single exposure suggesting synergistic effects. The results implicate that the phytotoxicity of both stressors can be associated with redox status imbalance. Our finding may provide insight into the physiological mechanisms of heavy metal exposure and salinity stress tolerance in soybeans and suggest that saline stress changes the effects of Cd toxicity on crops in Cd-salt-polluted soils.


Subject(s)
Cadmium , Metals, Heavy , Humans , Cadmium/toxicity , Cadmium/metabolism , Glycine max , Sodium Chloride/toxicity , Salt Tolerance , Salinity
4.
Arch Environ Contam Toxicol ; 85(1): 1-12, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37233741

ABSTRACT

The elevated use of salt as a de-icing agent on roads in Canada is causing an increase in the chloride concentration of freshwater ecosystems. Freshwater Unionid mussels are a group of organisms that are sensitive to increases in chloride levels. Unionids have greater diversity in North America than anywhere else on Earth, but they are also one of the most imperiled groups of organisms. This underscores the importance of understanding the effect that increasing salt exposure has on these threatened species. There are more data on the acute toxicity of chloride to Unionids than on chronic toxicity. This study investigated the effect of chronic sodium chloride exposure on the survival and filtering activity of two Unionid species (Eurynia dilatata, and Lasmigona costata) and assessed the effect on the metabolome in L. costata hemolymph. The concentration causing mortality after 28 days of exposure was similar for E. dilatata (1893 mg Cl-/L) and L. costata (1903 mg Cl-/L). Significant changes in the metabolome of the L. costata hemolymph were observed for mussels exposed to non-lethal concentrations. For example, several phosphatidylethanolamines, several hydroxyeicosatetraenoic acids, pyropheophorbide-a, and alpha-linolenic acid were significantly upregulated in the hemolymph of mussels exposed to 1000 mg Cl-/L for 28 days. While no mortality occurred in the treatment, elevated metabolites in the hemolymph are an indicator of stress.


Subject(s)
Bivalvia , Unionidae , Water Pollutants, Chemical , Animals , Sodium Chloride/toxicity , Chlorides , Ecosystem , Water Pollutants, Chemical/analysis , Bivalvia/metabolism , Sodium Chloride, Dietary
5.
Toxicol Ind Health ; 39(10): 583-593, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37530424

ABSTRACT

Textile effluents, although their composition can vary considerably, typically contain high levels of dissolved salts and exhibit wide variations in pH. Ecotoxicological studies regarding the effects of these parameters, however, have been limited owing to the need for sensitive and easy-to-handle bioindicators that require low amounts of sampling, are cost-effective, time-efficient, and ethically endorsed. This kind of study, additionally, demands robust multi-factorial statistical designs that can accurately characterize the individual and combined relationship between variables. In this research, Response Surface Methodology (RSM) was used to calculate the individual and interaction effects of NaCl concentration and pH value of a Simulated Textile Effluent (STE) on the development rate (DR) of the bioindicators: Bacillus subtilis bacteria and Lactuca sativa lettuce. The results demonstrated that the bioindicators were sensitive to both NaCl and pH factors, where the relative sensitivity relationship was B. subtilis > L. sativa. The quadratic equations generated in the experiments indicated that increased concentrations of 50-250 mg L-1 of NaCl caused a perturbance of 1.40%-34.40% on the DR of B. subtilis and 0.50%-12.30% on L. sativa. The pH factor at values of 3-11 caused an alteration of 27.00%-64.78% on the DR of the B. subtilis and 51.37%-37.37% on the L. sativa. These findings suggest that the selected bioindicators could serve as effective tools to assess the ecotoxicological effects of textile effluents on different ecological systems, and the RSM was an excellent tool to consider the ecotoxicological effects of the parameters and to describe the behavior of the results. In conclusion, the NaCl and pH factors may be responsible for disrupting different ecosystems, causing imbalances in their biodiversity and biomass. Before discharge or reuse, it is suggested to remove salts and neutralize pH from textile effluents and, mostly, develop novel, eco-friendlier textile processing techniques.


Subject(s)
Bacillus subtilis , Water Pollutants, Chemical , Lactuca , Sodium Chloride/toxicity , Sodium Chloride/analysis , Ecosystem , Environmental Biomarkers , Salts/analysis , Hydrogen-Ion Concentration , Textiles , Textile Industry , Water Pollutants, Chemical/analysis , Industrial Waste/analysis
6.
Sensors (Basel) ; 23(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37050486

ABSTRACT

Engineered nanomaterials are becoming increasingly common in commercial and consumer products and pose a serious toxicological threat. Exposure of human organisms to nanomaterials can occur by inhalation, oral intake, or dermal transport. Together with the consumption of alcohol in the physiological environment of the body containing NaCl, this has raised concerns about the potentially harmful effects of ingested nanomaterials on human health. Although gold nanoparticles (AuNPs) exhibit great potential for various biomedical applications, there is some inconsistency in the case of the unambiguous genotoxicity of AuNPs due to differences in their shape, size, solubility, and exposure time. A DNA/GCE (DNA/glassy carbon electrode) biosensor was used to study ethanol (EtOH) and NaCl-induced gold nanoparticle aggregation genotoxicity under UV light in this study. The genotoxic effect of dispersed and aggregated negatively charged gold nanoparticles AuNP1 (8 nm) and AuNP2 (30 nm) toward salmon sperm double-stranded dsDNA was monitored by cyclic and square-wave voltammetry (CV, SWV). Electrochemical impedance spectroscopy (EIS) was used for a surface study of the biosensor. The aggregation of AuNPs was monitored by UV-vis spectroscopy. AuNP1 aggregates formed by 30% v/v EtOH and 0.15 mol·L-1 NaCl caused the greatest damage to the biosensor DNA layer.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Male , Humans , Gold/toxicity , Gold/chemistry , Sodium Chloride/toxicity , Ethanol/toxicity , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Semen , DNA/chemistry , Electrodes , Biosensing Techniques/methods , Electrochemical Techniques/methods
7.
Ecotoxicol Environ Saf ; 242: 113938, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35926408

ABSTRACT

Salinity is one of the most common factors affecting alfalfa (Medicago sativa L.), and NaCl is one of the main factors of salinity stress which can cause heavy losses in agricultural production in the world. The application of exogenous melatonin (MT) plays a major role in numerous plants against various stress environments. The effects of exogenous MT on the NaCl tolerance of alfalfa treated with the control, 100 µmol L-1 MT, 150 mmol L-1 NaCl, or 150 mmol L-1 NaCl+ 100 µmol L-1 MT were investigated. The results showed that MT increased growth parameters, inhibited chlorophyll degradation and promoted photosynthetic gas exchange parameters (photosynthetic rate, conductance to H2O, and transpiration rate) and stomatal opening under NaCl stress. Osmotic regulation substances such as soluble sugar, proline and glycine betaine were the highest in the NaCl treatment and the second in the NaCl+MT treatment. Nitrogen, phosphorus, potassium, calcium and magnesium were reduced and sodium was increased by NaCl, whereas these levels were reversed by the NaCl+MT treatment. MT inhibited cell membrane imperfection, lipid peroxidation and reactive oxygen species (ROS) accumulation caused by NaCl stress. MT up-regulated the gene expression and activity of antioxidant enzymes and increased the content of antioxidant non-enzyme substances to scavenge excessive ROS in NaCl-treated plants. In addition, all indicators interacted with each other to a certain extent and could be grouped according to the relative values. All variables were divided into PC 1 (89.2 %) and PC 2 (4 %). They were clustered into two categories with opposite effects, and most of them were significant variables. Hence, these findings reveal that exogenous MT alleviates the inhibitory effects of NaCl stress on photosynthesis, stomata opening, osmotic adjustment, ion balance and redox homeostasis, enhancing tolerance and growth of alfalfa. Furthermore, it suggests that MT could be implemented to improve the NaCl tolerance of alfalfa.


Subject(s)
Medicago sativa , Melatonin , Antioxidants/metabolism , Medicago sativa/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Reactive Oxygen Species/metabolism , Sodium Chloride/metabolism , Sodium Chloride/toxicity
8.
FASEB J ; 34(11): 14997-15014, 2020 11.
Article in English | MEDLINE | ID: mdl-32939821

ABSTRACT

Diabetic nephropathy (DN) is a leading cause of end-stage renal disease (ESRD). Hypertension increases kidney stress, which deteriorates function, and leads to peripheral renal vascular resistance. Long-term hypoperfusion promotes interstitial fibrosis and glomerular sclerosis, resulting in nephrosclerosis. Although hypertension and DN are frequent ESRD complications, relevant animal models remain unavailable. We generated a deoxycorticosterone acetate (DOCA)-salt hypertensive uni-nephrectomized (UNx) KKAy mouse model demonstrating hypertension, hyperglycemia, cardiac hypertrophy, kidney failure, increased urinary albumin creatinine ratio (UACR), and increased renal PDE4D and cardiac PDE5A mRNA levels. We hypothesized that the novel PDE4 selective inhibitor, compound A, and PDE5 inhibitor, sildenafil, exhibit nephroprotective, and cardioprotective effects in this new model. Compound A, sildenafil, and the angiotensin II receptor blocker, irbesartan, significantly reduced ventricular hypertrophy and pleural effusion volume. Meanwhile, compound A and sildenafil significantly suppressed the UACR, urinary kidney injury molecule-1, and monocyte chemoattractant protein-1 levels, as well as that of renal pro-fibrotic marker mRNAs, including collagen 1A1, fibronectin, and transforming growth factor-beta (TGF-ß). Moreover, compound A significantly suppressed TGF-ß-induced pro-fibrotic mRNA expression in vitro in all major kidney lesions, including within the glomerular mesangial region, podocytes, and epithelial region. Hence, PDE4 and PDE5 inhibitors may be promising treatments, in combination with irbesartan, for DN with hypertension as they demonstrate complementary mechanisms.


Subject(s)
Cardiomegaly/drug therapy , Desoxycorticosterone/toxicity , Hyperglycemia/drug therapy , Hypertension/drug therapy , Phosphodiesterase 5 Inhibitors/pharmacology , Renal Insufficiency/drug therapy , Sildenafil Citrate/pharmacology , Acetates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cardiomegaly/chemically induced , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Female , Hyperglycemia/chemically induced , Hyperglycemia/enzymology , Hyperglycemia/pathology , Hypertension/chemically induced , Hypertension/enzymology , Hypertension/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mineralocorticoids/toxicity , Renal Insufficiency/chemically induced , Renal Insufficiency/enzymology , Renal Insufficiency/pathology , Sodium Chloride/toxicity , Tyramine/analogs & derivatives , Tyramine/pharmacology
9.
Arch Microbiol ; 203(3): 889-899, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33074377

ABSTRACT

Salinity stress is one of the most serious environmental issues in agricultural regions worldwide. Excess salinity inhibits root growth of various crops, and results in reductions of yield. It is of crucial to understand the molecular mechanisms mediating salinity stress responses for enhancing crops' salt tolerance. Marine red yeast Sporobolomyces pararoseus should have evolved some unique salt-tolerant mechanism, because they long-term live in high-salt ecosystems. However, little research has conducted so far by considering S. pararoseus as model microorganisms to study salt-tolerant mechanisms. Here, we successfully integrated metabolomics with transcriptomic profiles of S. pararoseus in response to salinity stress. Screening of metabolite features with untargeted metabolic profiling, we characterized 4862 compounds from the LC-MS/MS-based datasets. The integrated results showed that amino acid metabolism, carbohydrate metabolism, and lipid metabolism is significantly enriched in response to salt stress. Co-expression network analysis showed that 28 genes and 8 metabolites play an important role in the response of S. pararoseus, which provides valuable clues for subsequent validation. Together, the results provide valuable information for assessing the central metabolism of mediating salt responses in S. pararoseus and offer inventories of target genes for salt tolerance improvement via genetic engineering.


Subject(s)
Basidiomycota/drug effects , Metabolome/drug effects , Transcriptome/drug effects , Basidiomycota/genetics , Basidiomycota/metabolism , Carbohydrate Metabolism , Chromatography, Liquid , Salt Stress/genetics , Sodium Chloride/toxicity , Tandem Mass Spectrometry
10.
Mol Biol Rep ; 48(2): 1707-1715, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33611780

ABSTRACT

Saffron stigmas are widely used as food additives and as traditional medicine in Iran and many other countries. The unique taste, flavor and pharmaceutical properties of saffron stigmas are due to the presence of three apocarotenoids secondary metabolites crocin, picrocrocin and safranal. There is limited knowledge about the effect of environmental stresses on the metabolism of apocarotenoids in saffron. We analyzed the content of crocin and picrocrocin and the expression of key genes of apocarotenoid biosynthesis pathways (CsCCD2, CsCCD4, CsUGT2, CsCHY-ß and CsLCYB) in saffron plants exposed to moderate (90 mM) and high (150 mM) salt (NaCl) concentrations. Measuring ion concentrations in leaves showed an increased accumulation of Na+ and decreased uptake of K+ in salt treated compared to control plants indicating an effective salt stress. HPLC analysis of apocarotenoids revealed that crocin production was significantly halted (P < 0.05) with increasing salt concentration while picrocrocin level did not change with moderate salt but significantly dropped by high salt concentration. Real-time PCR analysis revealed a progressive decrease in transcript levels of CsUGT2 and CsLCYB genes with increasing salt concentration (P < 0.05). The expression of CsCCD2 and CsCHY-ß tolerated moderate salt concentration but significantly downregulated with high salt concentration. CsCCD4 however responded differently to salt concentration being decreased with moderate salt but increased at higher salt concentration. Our result suggested that salt stress had an adverse effect on the production of saffron apocarotenoids and it is likely influencing the quality of saffron stigma produced.


Subject(s)
Carotenoids/metabolism , Crocus/chemistry , Crocus/metabolism , Cyclohexenes/metabolism , Salt Stress/genetics , Terpenes/metabolism , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Chromatography, High Pressure Liquid , Crocus/drug effects , Crocus/genetics , Gene Expression Regulation, Plant/genetics , Glucosides/metabolism , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Potassium/metabolism , Real-Time Polymerase Chain Reaction , Sodium/metabolism , Sodium Chloride/toxicity
11.
Arch Environ Contam Toxicol ; 80(4): 779-788, 2021 May.
Article in English | MEDLINE | ID: mdl-33877369

ABSTRACT

Amphibian's skin bacterial community may help them to cope with several types of environmental perturbations, including osmotic stress caused by increased salinity. This work assessed whether an amphibian skin bacterium could increase its tolerance to NaCl after a long-term exposure to this salt. A strain of Erwinia toletana, isolated from the skin of Pelophylax perezi, was exposed to two salinity scenarios (with 18 g/L of NaCl): (1) long-term exposure (for 46 days; Et-NaCl), and (2) long-term exposure followed by a recovery period (exposure for 30 days to NaCl and then to LB medium for 16 days; Et-R). After exposure, the sensitivity of E. toletana clonal populations to NaCl was assessed by exposing them to 6 NaCl concentrations (LB medium spiked with NaCl) plus a control (LB medium). Genotypic alterations were assessed by PCR-based molecular typing method (BOX-PCR). The results showed that tolerance of E. toletana to NaCl slightly increased after the long-term exposure, EC50 for growth were: 22.5 g/L (8.64-36.4) for Et-LB; 30.3 g/L (23.2-37.4) for Et-NaCl; and 26.1 g/L (19.332.9) for Et-R. Differences in metabolic activity were observed between Et-LB and Et-R and between Et-NaCl and Et-R, suggesting the use of different substrates by this bacterium when exposed to salinized environments. NaCl-induced genotypic alterations were not detected. This work suggests that E. toletana exposed to low levels of salinity, activate different metabolic pathways to cope with osmotic stress. These findings may be further explored to be used in bioaugmentation procedures through the supplementation with this bacterium of the skin microbiome of natural populations of amphibians exposed to salinization.


Subject(s)
Erwinia , Salinity , Animals , Ranidae , Sodium Chloride/toxicity
12.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429984

ABSTRACT

Aquaporins are channel proteins that facilitate the transmembrane transport of water and other small neutral molecules, thereby playing vital roles in maintaining water and nutrition homeostasis in the life activities of all organisms. Canavalia rosea, a seashore and mangrove-accompanied halophyte with strong adaptability to adversity in tropical and subtropical regions, is a good model for studying the molecular mechanisms underlying extreme saline-alkaline and drought stress tolerance in leguminous plants. In this study, a PIP2 gene (CrPIP2;3) was cloned from C. rosea, and its expression patterns and physiological roles in yeast and Arabidopsis thaliana heterologous expression systems under high salt-alkali and high osmotic stress conditions were examined. The expression of CrPIP2;3 at the transcriptional level in C. rosea was affected by high salinity and alkali, high osmotic stress, and abscisic acid treatment. In yeast, the expression of CrPIP2;3 enhanced salt/osmotic and oxidative sensitivity under high salt/osmotic and H2O2 stress. The overexpression of CrPIP2;3 in A. thaliana could enhance the survival and recovery of transgenic plants under drought stress, and the seed germination and seedling growth of the CrPIP2;3 OX (over-expression) lines showed slightly stronger tolerance to high salt/alkali than the wild-type. The transgenic plants also showed a higher response level to high-salinity and dehydration than the wild-type, mostly based on the up-regulated expression of salt/dehydration marker genes in A. thaliana plants. The reactive oxygen species (ROS) staining results indicated that the transgenic lines did not possess stronger ROS scavenging ability and stress tolerance than the wild-type under multiple stresses. The results confirmed that CrPIP2;3 is involved in the response of C. rosea to salt and drought, and primarily acts by mediating water homeostasis rather than by acting as an ROS transporter, thereby influencing physiological processes under various abiotic stresses in plants.


Subject(s)
Arabidopsis/genetics , Canavalia/genetics , Salt-Tolerant Plants/genetics , Stress, Physiological/genetics , Alkalies/toxicity , Arabidopsis/growth & development , Canavalia/growth & development , Droughts , Gene Expression Regulation, Plant , Germination/drug effects , Hydrogen Peroxide/chemistry , Osmotic Pressure/drug effects , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Salinity , Salt Tolerance/genetics , Seedlings/drug effects , Sodium Chloride/toxicity
13.
Int J Mol Sci ; 22(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33673022

ABSTRACT

Grain legumes are important crops, but they are salt sensitive. This research dissected the responses of four (sub)tropical grain legumes to ionic components (Na+ and/or Cl-) of salt stress. Soybean, mungbean, cowpea, and common bean were subjected to NaCl, Na+ salts (without Cl-), Cl- salts (without Na+), and a "high cation" negative control for 57 days. Growth, leaf gas exchange, and tissue ion concentrations were assessed at different growing stages. For soybean, NaCl and Na+ salts impaired seed dry mass (30% of control), more so than Cl- salts (60% of control). All treatments impaired mungbean growth, with NaCl and Cl- salt treatments affecting seed dry mass the most (2% of control). For cowpea, NaCl had the greatest adverse impact on seed dry mass (20% of control), while Na+ salts and Cl- salts had similar intermediate effects (~45% of control). For common bean, NaCl had the greatest adverse effect on seed dry mass (4% of control), while Na+ salts and Cl- salts impaired seed dry mass to a lesser extent (~45% of control). NaCl and Na+ salts (without Cl-) affected the photosynthesis (Pn) of soybean more than Cl- salts (without Na+) (50% of control), while the reverse was true for mungbean. Na+ salts (without Cl-), Cl- salts (without Na+), and NaCl had similar adverse effects on Pn of cowpea and common bean (~70% of control). In conclusion, salt sensitivity is predominantly determined by Na+ toxicity in soybean, Cl- toxicity in mungbean, and both Na+ and Cl- toxicity in cowpea and common bean.


Subject(s)
Chlorides/toxicity , Glycine max/drug effects , Phaseolus/drug effects , Sodium Chloride/toxicity , Sodium/toxicity , Vigna/drug effects , Biomass , Phaseolus/growth & development , Plant Leaves/drug effects , Plant Leaves/metabolism , Salt Tolerance/drug effects , Glycine max/growth & development , Species Specificity , Vigna/classification , Vigna/growth & development
14.
Am J Pathol ; 189(9): 1721-1731, 2019 09.
Article in English | MEDLINE | ID: mdl-31220449

ABSTRACT

Mutations in natriuretic peptide receptor 2 (Npr2) gene cause a rare form of short-limbed dwarfism, but its physiological effects have not been well studied. Human and mouse genetic data suggest that Npr2 in the kidney plays a role in salt homeostasis. Herein, we described anatomic changes within renal papilla of Npr2 knockout (Npr2-/-) mice. Dramatic reduction was found in diuresis, and albuminuria was evident after administration of 1% NaCl in drinking water in Npr2-/- and heterozygous (Npr2+/-) mice compared with their wild-type (Npr2+/+) littermates. There was indication of renal epithelial damage accompanied by high numbers of red blood cells and inflammatory cells (macrophage surface glycoproteins binding to galectin-3) and an increase of renal epithelial damage marker (T-cell Ig and mucin domain 1) in Npr2-/- mice. Addition of 1% NaCl tended to increase apoptotic cells (cleaved caspase 3) in the renal papilla of Npr2-/- mice. In vitro, genetic silencing of the Npr2 abolished protective effects of C-type natriuretic peptide, a ligand for Npr2, against death of M-1 kidney epithelial cells exposed to 360 mmol/L NaCl. Finally, significantly lower levels of expression of the NPR2 protein were detected in renal samples of hypertensive compared with normotensive human subjects. Taken together, these findings suggest that Npr2 is essential to protect renal epithelial cells from high concentrations of salt and prevent kidney injury.


Subject(s)
Acute Kidney Injury/prevention & control , Hypertension/pathology , Kidney Medulla/drug effects , Receptors, Atrial Natriuretic Factor/physiology , Sodium Chloride/toxicity , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Animals , Female , Humans , Hypertension/genetics , Hypertension/metabolism , Kidney Medulla/metabolism , Kidney Medulla/pathology , Male , Mice , Mice, Knockout
15.
New Phytol ; 225(4): 1681-1698, 2020 02.
Article in English | MEDLINE | ID: mdl-31597191

ABSTRACT

Salinity stress limits plant growth and has a major impact on agricultural productivity. Here, we identify NAC transcription factor SlTAF1 as a regulator of salt tolerance in cultivated tomato (Solanum lycopersicum). While overexpression of SlTAF1 improves salinity tolerance compared with wild-type, lowering SlTAF1 expression causes stronger salinity-induced damage. Under salt stress, shoots of SlTAF1 knockdown plants accumulate more toxic Na+ ions, while SlTAF1 overexpressors accumulate less ions, in accordance with an altered expression of the Na+ transporter genes SlHKT1;1 and SlHKT1;2. Furthermore, stomatal conductance and pore area are increased in SlTAF1 knockdown plants during salinity stress, but decreased in SlTAF1 overexpressors. We identified stress-related transcription factor, abscisic acid metabolism and defence-related genes as potential direct targets of SlTAF1, correlating it with reactive oxygen species scavenging capacity and changes in hormonal response. Salinity-induced changes in tricarboxylic acid cycle intermediates and amino acids are more pronounced in SlTAF1 knockdown than wild-type plants, but less so in SlTAF1 overexpressors. The osmoprotectant proline accumulates more in SlTAF1 overexpressors than knockdown plants. In summary, SlTAF1 controls the tomato's response to salinity stress by combating both osmotic stress and ion toxicity, highlighting this gene as a promising candidate for the future breeding of stress-tolerant crops.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Salt Stress/physiology , Solanum lycopersicum/metabolism , Gene Knockdown Techniques , Homeostasis , Ion Transport/genetics , Ion Transport/physiology , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plant Roots , Plant Shoots , Potassium , Salt Stress/genetics , Sodium , Sodium Chloride/toxicity
16.
Plant Cell Environ ; 43(6): 1348-1359, 2020 06.
Article in English | MEDLINE | ID: mdl-32176351

ABSTRACT

Brassinosteroids (BRs) are known to improve salt tolerance of plants, but not in all situations. Here, we show that a certain concentration of 24-epibrassinolide (EBL), an active BR, can promote the tolerance of canola under high-salt stress, but the same concentration is disadvantageous under low-salt stress. We define this phenomenon as hormonal stress-level-dependent biphasic (SLDB) effects. The SLDB effects of EBL on salt tolerance in canola are closely related to H2 O2 accumulation, which is regulated by polyamine metabolism, especially putrescine (Put) oxidation. The inhibition of EBL on canola under low-salt stress can be ameliorated by repressing Put biosynthesis or diamine oxidase activity to reduce H2 O2 production. Genetic and phenotypic results of bri1-9, bak1, bes1-D, and bzr1-1D mutants and overexpression lines of BRI1 and BAK1 in Arabidopsis indicate that a proper enhancement of BR signaling benefits plants in countering salt stress, whereas excessive enhancement is just as harmful as a deficiency. These results highlight the involvement of crosstalk between BR signaling and Put metabolism in H2 O2 accumulation, which underlies the dual role of BR in plant salt tolerance.


Subject(s)
Arabidopsis/physiology , Brassica napus/physiology , Brassinosteroids/pharmacology , Putrescine/metabolism , Salt Tolerance/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Brassica napus/drug effects , Germination/drug effects , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Salt Stress/drug effects , Signal Transduction/drug effects , Sodium Chloride/toxicity , Spermidine/metabolism , Steroids, Heterocyclic/pharmacology
17.
Cell Mol Neurobiol ; 40(2): 273-282, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31399838

ABSTRACT

Since the discovery in 2001, the G protein-coupled trace amine-associated receptor 1 (TAAR1) has become an important focus of research targeted on evaluation of its role in the central nervous system (CNS). Meanwhile, impact of TAAR1 in the peripheral organs is less investigated. Expression of TAAR1 was demonstrated in different peripheral tissues: pancreatic ß-cells, stomach, intestines, white blood cells (WBC), and thyroid. However, the role of TAAR1 in regulation of hematological parameters has not been investigated yet. In this study, we performed analysis of anxiety-related behaviors, a complete blood count (CBC), erythrocyte fragility, as well as FT3/FT4 thyroid hormones levels in adult and middle-aged TAAR1 knockout mice. Complete blood count analysis was performed on a Siemens Advia 2120i hematology analyzer and included more than 35 measured and calculated parameters. Erythrocyte fragility test evaluated spherocytosis pathologies of red blood cells (RBC). No significant alterations in essentially all these parameters were found in mice without TAAR1. However, comparative aging analysis has revealed a decreased neutrophils level in the middle-aged TAAR1 knockout mouse group. Minimal alterations in these parameters observed in TAAR1 knockout mice suggest that future TAAR1-based therapies should exert little hematological effect and thus will likely have a good safety profile.


Subject(s)
Anxiety/blood , Receptors, G-Protein-Coupled/blood , Receptors, G-Protein-Coupled/deficiency , Age Factors , Animals , Anxiety/psychology , Dose-Response Relationship, Drug , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Sodium Chloride/toxicity
18.
PLoS Genet ; 13(6): e1006832, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604776

ABSTRACT

Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues.


Subject(s)
Arabidopsis Proteins/genetics , Cell Wall/genetics , Plant Roots/genetics , Protein Kinases/genetics , Receptors, Cell Surface/genetics , Stress, Physiological/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Cell Wall/drug effects , Cellulose/biosynthesis , Cyclopentanes/metabolism , Disease Resistance/genetics , Fusarium/pathogenicity , Gene Expression Regulation, Plant/drug effects , Lignin/biosynthesis , Oxylipins/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Roots/drug effects , Protein Kinases/biosynthesis , Sodium Chloride/toxicity , Stress, Physiological/drug effects
19.
Ecotoxicol Environ Saf ; 195: 110437, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32193020

ABSTRACT

More research about branch order-specific accumulation of toxic ions in root systems is needed to know root branch-related responses in growth and physiology. In this study, we used Populus deltoides females and males as a model to detect sex-specific differences in physiology, biochemistry, ultrastructure of absorbing roots and distribution of toxic ions in heterogeneous root systems under Cd, salinity and combined stress. Healthy annual male and female plants of P. deltoides were cultivated in soils including 5 mg kg-1 of Cd, 0.2% (w/w) of NaCl and their combination for a growth season. Our results are mainly as follows: (1) females suffered more growth inhibition, root biomass decline, root viability depression, and damage to distal root cells, but lower ability to scavenge reactive oxygen species (ROS) than the males under all stresses; (2) In both sexes, salinity adopted in the present study caused more significant negative effects on growth and organelles integrity than Cd stress, while interaction treatment did not induced a further depression in growth or more impairments in root cells of both sexes in comparison to salinity, indicating influence of combined stress was not equal simply to a superposition of the effects caused by single factors; (3) Cd and Na accumulation in root systems is highly heterogeneous and branch order-specific, with lower-order roots containing more Cd2+ but less Na+, and higher-order roots accumulating more Na+ but less Cd2+. Besides, it is noteworthy that females accumulated more Cd2+ in 1-2 order roots and more Na+ in 1-3 order roots than males under the interaction treatment. These results indicated that strategies in toxic ions accumulation in heterogeneous root systems of P. deltoides was highly branch order-specific, and may closely correlate with sex-specific root growth and physiological responses to the interaction of Cd and salinity.


Subject(s)
Cadmium/toxicity , Plant Roots/drug effects , Populus/drug effects , Sodium Chloride/toxicity , Soil Pollutants/toxicity , Biomass , Plant Roots/growth & development , Plant Roots/physiology , Populus/growth & development , Populus/physiology , Salinity , Sex , Soil
20.
Ecotoxicol Environ Saf ; 201: 110823, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32540619

ABSTRACT

This study compared co-tolerance to salinity and cadmium and investigated its mechanisms in a facultative metallophyte Silene vulgaris originating from distinct habitats. Shoots of calamine (Cal) and non-metallicolous (N-Cal) ecotypes grown in vitro were exposed to 10 and 100 mM NaCl, 5 µM CdCl2 and their combinations. Stress effects were evaluated based on growth, oxidative stress parameters, and DNA content and damage. Tolerance mechanisms were assessed by analyzing non-enzymatic antioxidants, osmolytes and ion accumulation. Irrespective of the ecotype, Cd stimulated shoot proliferation (micropropagation coefficients MC = 15.2 and 12.1 for Cal and N-Cal, respectively, growth tolerance index GTI = 148.1 and 156.7%). In Cal ecotype this was attributed to an increase in glutathione content and reorganization of cell membrane structures under Cd exposure, whereas in N-Cal to enhanced synthesis of other non-enzymatic antioxidants, mainly carotenoids and ascorbate. Low salinity stimulated growth of Cal ecotype due to optimizing Cl- content. High salinity inhibited growth, especially in Cal ecotype, where it enhanced DNA damage and disturbed ionic homeostasis. Species-specific reaction to combined salinity and Cd involved a mutual inhibition of Na+, Cl- and Cd2+ uptake. N-Cal ecotype responded to combined stresses by enhancing its antioxidant defense, presumably induced by Cd, whereas the metallicolous ecotype triggered osmotic adjustment. The study revealed that in S. vulgaris Cd application ameliorated metabolic responses to simultaneous salinity exposure. It also shed a light on distinct strategies of coping with combined abiotic stresses in two ecotypes of the species showing high plasticity in environmental conditions.


Subject(s)
Adaptation, Physiological , Cadmium/toxicity , DNA Damage , Oxidative Stress/drug effects , Silene/drug effects , Sodium Chloride/toxicity , Soil Pollutants/toxicity , Antioxidants/metabolism , Ascorbic Acid/metabolism , Carotenoids/metabolism , Ecotype , Glutathione/metabolism , Oxidative Stress/genetics , Salinity , Silene/genetics , Silene/growth & development , Silene/metabolism , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL