Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.809
Filter
Add more filters

Publication year range
1.
Cell ; 183(1): 62-75.e17, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32946811

ABSTRACT

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.


Subject(s)
Muscle, Skeletal/metabolism , Receptors, G-Protein-Coupled/metabolism , Succinic Acid/metabolism , Animals , Humans , Hydrogen-Ion Concentration , Inflammation/metabolism , Mice , Mitochondria/metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle Contraction , Receptors, G-Protein-Coupled/physiology , Signal Transduction , Succinates/metabolism , Symporters/metabolism
2.
Cell ; 174(4): 780-784, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30096309

ABSTRACT

Krebs cycle intermediates traditionally link to oxidative phosphorylation whilst also making key cell components. It is now clear that some of these metabolites also act as signals. Succinate plays an important role in inflammatory, hypoxic, and metabolic signaling, while itaconate (from another Krebs cycle intermediate, cis-aconitate) has an anti-inflammatory role.


Subject(s)
Citric Acid Cycle/physiology , Succinates/metabolism , Succinic Acid/metabolism , Animals , Humans , Signal Transduction
3.
Cell ; 171(4): 736-737, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29100069

ABSTRACT

Nearly 3% of the human population carries bi-allelic loss-of-function variants in the gene encoding CLYBL. While largely healthy, these individuals exhibit reduced circulating vitamin B12 levels. In this issue of Cell, Shen and colleagues uncover the metabolic role of CLYBL, linking its function to B12 metabolism and the immunomodulatory metabolite, itaconate.


Subject(s)
Succinates , Vitamin B 12 , Gene Knockout Techniques , Humans , Vitamins
4.
Cell ; 171(4): 771-782.e11, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29056341

ABSTRACT

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Subject(s)
Carbon-Carbon Lyases/metabolism , Succinates/metabolism , Vitamin B 12/metabolism , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/genetics , Gene Knockout Techniques , Humans , Metabolic Networks and Pathways , Mitochondria/metabolism , Models, Molecular
5.
Mol Cell ; 84(5): 955-966.e4, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38325379

ABSTRACT

SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.


Subject(s)
Receptors, G-Protein-Coupled , Succinic Acid , Mice , Rats , Animals , Humans , Succinic Acid/metabolism , Receptors, G-Protein-Coupled/metabolism , Molecular Dynamics Simulation , Succinates/metabolism , Stress, Physiological
6.
Nature ; 629(8010): 184-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38600378

ABSTRACT

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glucocorticoids , Inflammation , Macrophages , Mitochondria , Succinates , Animals , Female , Humans , Male , Mice , Anti-Inflammatory Agents/pharmacology , Carboxy-Lyases/metabolism , Carboxy-Lyases/antagonists & inhibitors , Citric Acid Cycle/drug effects , Citric Acid Cycle/genetics , Cytokines/immunology , Cytokines/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Receptors, Glucocorticoid/metabolism , Succinates/metabolism , Enzyme Activation/drug effects
7.
Mol Cell ; 82(15): 2844-2857.e10, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35662396

ABSTRACT

Lysosomes are the main organelles in macrophages for killing invading bacteria. However, the precise mechanism underlying lysosomal biogenesis upon bacterial infection remains enigmatic. We demonstrate here that LPS stimulation increases IRG1-dependent itaconate production, which promotes lysosomal biogenesis by activating the transcription factor, TFEB. Mechanistically, itaconate directly alkylates human TFEB at cysteine 212 (Cys270 in mice) to induce its nuclear localization by antagonizing mTOR-mediated phosphorylation and cytosolic retention. Functionally, abrogation of itaconate synthesis by IRG1/Irg1 knockout or expression of an alkylation-deficient TFEB mutant impairs the antibacterial ability of macrophages in vitro. Furthermore, knockin mice harboring an alkylation-deficient TFEB mutant display elevated susceptibility to Salmonella typhimurium infection, whereas in vivo treatment of OI, a cell-permeable itaconate derivative, limits inflammation. Our study identifies itaconate as an endogenous metabolite that functions as a lysosomal inducer in macrophages in response to bacterial infection, implying the potential therapeutic utility of itaconate in treating human bacterial infection.


Subject(s)
Lysosomes , Succinates , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Immunity, Innate , Lysosomes/metabolism , Mice , Succinates/metabolism , Succinates/pharmacology
8.
Mol Cell ; 82(15): 2732-2734, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931037

ABSTRACT

Zhang et al. (2022) report that itaconate, a mitochondrial metabolite produced by macrophages upon inflammatory stimuli, activates the master regulator of lysosomal biogenesis TFEB to facilitate clearance of invading bacteria and efficient immune response.


Subject(s)
Macrophages , Succinates , Anti-Bacterial Agents/metabolism , Lysosomes/metabolism , Macrophages/metabolism , Succinates/metabolism
9.
Nat Immunol ; 23(7): 988, 2022 07.
Article in English | MEDLINE | ID: mdl-35764716

Subject(s)
Macrophages , Succinates
10.
Nat Immunol ; 23(4): 471, 2022 04.
Article in English | MEDLINE | ID: mdl-35354957

Subject(s)
Macrophages , Succinates
11.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635240

ABSTRACT

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Subject(s)
Glycoproteins/metabolism , Hydro-Lyases/metabolism , Neurons/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Pattern Recognition/metabolism , Zika Virus Infection/immunology , Zika Virus/physiology , Animals , Cell Death , Cells, Cultured , Disease Models, Animal , Glycoproteins/genetics , Humans , Hydro-Lyases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroprotection , RNA, Viral/immunology , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Succinate Dehydrogenase/metabolism , Succinates/metabolism , Virus Replication
12.
Mol Cell ; 78(5): 814-823, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32333837

ABSTRACT

Metabolites have functions in the immune system independent of their conventional roles as sources or intermediates in biosynthesis and bioenergetics. We are still in the pioneering phase of gathering information about the functions of specific metabolites in immunoregulation. In this review, we cover succinate, itaconate, α-ketoglutarate, and lactate as examples. Each of these metabolites has a different story of how their immunoregulatory functions were discovered and how their roles in the complex process of inflammation were revealed. Parallels and interactions are emerging between metabolites and cytokines, well-known immunoregulators. We depict molecular mechanisms by which metabolites prime cellular and often physiological changes focusing on intra- and extra-cellular activities and signaling pathways. Possible therapeutic opportunities for immune and inflammatory diseases are emerging.


Subject(s)
Carboxylic Acids/immunology , Carboxylic Acids/metabolism , Immunity/immunology , Animals , Citric Acid Cycle , Cytokines/metabolism , Energy Metabolism , Humans , Immunity/physiology , Inflammation/metabolism , Ketoglutaric Acids/immunology , Ketoglutaric Acids/metabolism , Lactic Acid/immunology , Lactic Acid/metabolism , Signal Transduction , Succinates/immunology , Succinates/metabolism , Succinic Acid/immunology , Succinic Acid/metabolism
14.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457455

ABSTRACT

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Subject(s)
Bacterial Proteins , Succinic Acid , Animals , Bacterial Proteins/metabolism , Succinic Acid/metabolism , Salmonella typhimurium/genetics , Succinates/metabolism , Carbon/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Gene Expression Regulation, Bacterial , Mammals/metabolism
15.
Proc Natl Acad Sci U S A ; 121(15): e2400675121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564634

ABSTRACT

Atherosclerosis is fueled by a failure to resolve lipid-driven inflammation within the vasculature that drives plaque formation. Therapeutic approaches to reverse atherosclerotic inflammation are needed to address the rising global burden of cardiovascular disease (CVD). Recently, metabolites have gained attention for their immunomodulatory properties, including itaconate, which is generated from the tricarboxylic acid-intermediate cis-aconitate by the enzyme Immune Responsive Gene 1 (IRG1/ACOD1). Here, we tested the therapeutic potential of the IRG1-itaconate axis for human atherosclerosis. Using single-cell RNA sequencing (scRNA-seq), we found that IRG1 is up-regulated in human coronary atherosclerotic lesions compared to patient-matched healthy vasculature, and in mouse models of atherosclerosis, where it is primarily expressed by plaque monocytes, macrophages, and neutrophils. Global or hematopoietic Irg1-deficiency in mice increases atherosclerosis burden, plaque macrophage and lipid content, and expression of the proatherosclerotic cytokine interleukin (IL)-1ß. Mechanistically, absence of Irg1 increased macrophage lipid accumulation, and accelerated inflammation via increased neutrophil extracellular trap (NET) formation and NET-priming of the NLRP3-inflammasome in macrophages, resulting in increased IL-1ß release. Conversely, supplementation of the Irg1-itaconate axis using 4-octyl itaconate (4-OI) beneficially remodeled advanced plaques and reduced lesional IL-1ß levels in mice. To investigate the effects of 4-OI in humans, we leveraged an ex vivo systems-immunology approach for CVD drug discovery. Using CyTOF and scRNA-seq of peripheral blood mononuclear cells treated with plasma from CVD patients, we showed that 4-OI attenuates proinflammatory phospho-signaling and mediates anti-inflammatory rewiring of macrophage populations. Our data highlight the relevance of pursuing IRG1-itaconate axis supplementation as a therapeutic approach for atherosclerosis in humans.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Humans , Mice , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Cholesterol , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Lipids , Plaque, Atherosclerotic/drug therapy , Succinates/metabolism
16.
Proc Natl Acad Sci U S A ; 120(25): e2219431120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307458

ABSTRACT

Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation. Initial alterations in Paneth cells, as frequently observed in obese and inflammatorybowel diseases patients, cause a mild remodeling of microbiota, with amplification of succinate-producing species. SucnR1-dependent activation of epithelial tuft cells triggers a type 2 immune response that, in turn, aggravates the Paneth cell defaults, promoting dysbiosis and chronic inflammation. We thus reveal a function of tuft cells in promoting dysbiosis following Paneth cell deficiency and an unappreciated essential role of Paneth cells in maintaining a balanced microbiota to prevent inappropriate activation of tuft cells and deleterious dysbiosis. This succinate-tuft cell inflammation circuit may also contribute to the chronic dysbiosis observed in patients.


Subject(s)
Dysbiosis , Mucous Membrane , Humans , Inflammation , Paneth Cells , Succinates , Succinic Acid
17.
Proc Natl Acad Sci U S A ; 120(20): e2214942120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155842

ABSTRACT

Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.


Subject(s)
Neoplasms , Succinic Acid , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Succinates , Humans
18.
Plant J ; 117(2): 573-589, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897092

ABSTRACT

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Subject(s)
Chromatin , Saccharum , Succinates , Saccharum/genetics , Saccharum/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Plant Breeding , Genomics , Polyploidy
19.
Plant J ; 119(1): 252-265, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38596892

ABSTRACT

Chicoric acid is the major active ingredient of the world-popular medicinal plant purple coneflower (Echinacea purpurea (L.) Menoch). It is recognized as the quality index of commercial hot-selling Echinacea products. While the biosynthetic pathway of chicoric acid in purple coneflower has been elucidated recently, its regulatory network remains elusive. Through co-expression and phylogenetic analysis, we found EpMYB2, a typical R2R3-type MYB transcription factor (TF) responsive to methyl jasmonate (MeJA) simulation, is a positive regulator of chicoric acid biosynthesis. In addition to directly regulating chicoric acid biosynthetic genes, EpMYB2 positively regulates genes of the upstream shikimate pathway. We also found that EpMYC2 could activate the expression of EpMYB2 by binding to its G-box site, and the EpMYC2-EpMYB2 module is involved in the MeJA-induced chicoric acid biosynthesis. Overall, we identified an MYB TF that positively regulates the biosynthesis of chicoric acid by activating both primary and specialized metabolic genes. EpMYB2 links the gap between the JA signaling pathway and chicoric acid biosynthesis. This work opens a new direction toward engineering purple coneflower with higher medicinal qualities.


Subject(s)
Caffeic Acids , Echinacea , Gene Expression Regulation, Plant , Plant Proteins , Succinates , Transcription Factors , Plant Proteins/genetics , Plant Proteins/metabolism , Succinates/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Caffeic Acids/metabolism , Echinacea/genetics , Echinacea/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Phylogeny , Acetates/pharmacology
20.
Plant Cell ; 34(10): 3844-3859, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35876813

ABSTRACT

The Arabidopsis thaliana GSK3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) is a key negative regulator of brassinosteroid (BR) signaling and a hub for crosstalk with other signaling pathways. However, the mechanisms controlling BIN2 activity are not well understood. Here we performed a forward genetic screen for resistance to the plant-specific GSK3 inhibitor bikinin and discovered that a mutation in the ADENOSINE MONOPHOSPHATE DEAMINASE (AMPD)/EMBRYONIC FACTOR1 (FAC1) gene reduces the sensitivity of Arabidopsis seedlings to both bikinin and BRs. Further analyses revealed that AMPD modulates BIN2 activity by regulating its oligomerization in a hydrogen peroxide (H2O2)-dependent manner. Exogenous H2O2 induced the formation of BIN2 oligomers with a decreased kinase activity and an increased sensitivity to bikinin. By contrast, AMPD activity inhibition reduced the cytosolic reactive oxygen species (ROS) levels and the amount of BIN2 oligomers, correlating with the decreased sensitivity of Arabidopsis plants to bikinin and BRs. Furthermore, we showed that BIN2 phosphorylates AMPD to possibly alter its function. Our results uncover the existence of an H2O2 homeostasis-mediated regulation loop between AMPD and BIN2 that fine-tunes the BIN2 kinase activity to control plant growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Adenosine Monophosphate/metabolism , Aminopyridines , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/genetics , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Succinates
SELECTION OF CITATIONS
SEARCH DETAIL