Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.229
Filter
Add more filters

Publication year range
1.
Cell ; 179(2): 448-458.e11, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564454

ABSTRACT

Bacteria and archaea possess a striking diversity of CRISPR-Cas systems divided into six types, posing a significant barrier to viral infection. As part of the virus-host arms race, viruses encode protein inhibitors of type I, II, and V CRISPR-Cas systems, but whether there are natural inhibitors of the other, mechanistically distinct CRISPR-Cas types is unknown. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB1, encoded by the Sulfolobus virus SIRV2. AcrIIIB1 exclusively inhibits CRISPR-Cas subtype III-B immunity mediated by the RNase activity of the accessory protein Csx1. AcrIIIB1 does not appear to bind Csx1 but, rather, interacts with two distinct subtype III-B effector complexes-Cmr-α and Cmr-γ-which, in response to protospacer transcript binding, are known to synthesize cyclic oligoadenylates (cOAs) that activate the Csx1 "collateral" RNase. Taken together, we infer that AcrIIIB1 inhibits type III-B CRISPR-Cas immunity by interfering with a Csx1 RNase-related process.


Subject(s)
CRISPR-Associated Proteins/physiology , CRISPR-Cas Systems , Host-Pathogen Interactions , Rudiviridae/metabolism , Sulfolobus/virology , Ribonucleases/metabolism
2.
Cell ; 179(1): 165-179.e18, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31539494

ABSTRACT

The three-dimensional organization of chromosomes can have a profound impact on their replication and expression. The chromosomes of higher eukaryotes possess discrete compartments that are characterized by differing transcriptional activities. Contrastingly, most bacterial chromosomes have simpler organization with local domains, the boundaries of which are influenced by gene expression. Numerous studies have revealed that the higher-order architectures of bacterial and eukaryotic chromosomes are dependent on the actions of structural maintenance of chromosomes (SMC) superfamily protein complexes, in particular, the near-universal condensin complex. Intriguingly, however, many archaea, including members of the genus Sulfolobus do not encode canonical condensin. We describe chromosome conformation capture experiments on Sulfolobus species. These reveal the presence of distinct domains along Sulfolobus chromosomes that undergo discrete and specific higher-order interactions, thus defining two compartment types. We observe causal linkages between compartment identity, gene expression, and binding of a hitherto uncharacterized SMC superfamily protein that we term "coalescin."


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Archaeal/metabolism , Sulfolobus/cytology , Sulfolobus/genetics , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Archaeal/genetics , DNA Replication/genetics , DNA, Archaeal/metabolism , DNA-Binding Proteins/metabolism , Gene Expression , Genetic Loci/genetics , Models, Genetic , Multiprotein Complexes/metabolism , Plasmids/genetics , Protein Binding/genetics , Transcription, Genetic
3.
Cell ; 178(4): 820-834.e14, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398339

ABSTRACT

Delineating ecologically meaningful populations among microbes is important for identifying their roles in environmental and host-associated microbiomes. Here, we introduce a metric of recent gene flow, which when applied to co-existing microbes, identifies congruent genetic and ecological units separated by strong gene flow discontinuities from their next of kin. We then develop a pipeline to identify genome regions within these units that show differential adaptation and allow mapping of populations onto environmental variables or host associations. Using this reverse ecology approach, we show that the human commensal bacterium Ruminococcus gnavus breaks up into sharply delineated populations that show different associations with health and disease. Defining populations by recent gene flow in this way will facilitate the analysis of bacterial and archaeal genomes using ecological and evolutionary theory developed for plants and animals, thus allowing for testing unifying principles across all biology.


Subject(s)
Clostridiales/genetics , Gene Flow , Microbiota/genetics , Adaptation, Physiological/genetics , Alleles , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Gene Transfer, Horizontal , Genome, Bacterial , Humans , Models, Genetic , Mutation Rate , Phylogeny , Polymorphism, Single Nucleotide , Prochlorococcus/genetics , Sulfolobus/genetics , Vibrio/genetics
4.
Mol Cell ; 79(5): 741-757.e7, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32730741

ABSTRACT

Cmr-ß is a type III-B CRISPR-Cas complex that, upon target RNA recognition, unleashes a multifaceted immune response against invading genetic elements, including single-stranded DNA (ssDNA) cleavage, cyclic oligoadenylate synthesis, and also a unique UA-specific single-stranded RNA (ssRNA) hydrolysis by the Cmr2 subunit. Here, we present the structure-function relationship of Cmr-ß, unveiling how binding of the target RNA regulates the Cmr2 activities. Cryoelectron microscopy (cryo-EM) analysis revealed the unique subunit architecture of Cmr-ß and captured the complex in different conformational stages of the immune response, including the non-cognate and cognate target-RNA-bound complexes. The binding of the target RNA induces a conformational change of Cmr2, which together with the complementation between the 5' tag in the CRISPR RNAs (crRNA) and the 3' antitag of the target RNA activate different configurations in a unique loop of the Cmr3 subunit, which acts as an allosteric sensor signaling the self- versus non-self-recognition. These findings highlight the diverse defense strategies of type III complexes.


Subject(s)
Adaptive Immunity/physiology , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/physiology , Clustered Regularly Interspaced Short Palindromic Repeats , Archaeal Proteins/chemistry , Archaeal Proteins/physiology , Archaeal Proteins/ultrastructure , CRISPR-Associated Proteins/ultrastructure , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Cryoelectron Microscopy , DNA, Single-Stranded/metabolism , Models, Molecular , Protein Binding , Protein Conformation , RNA, Messenger/metabolism , Structure-Activity Relationship , Sulfolobus/genetics , Sulfolobus/physiology
5.
Nature ; 577(7791): 572-575, 2020 01.
Article in English | MEDLINE | ID: mdl-31942067

ABSTRACT

The CRISPR system in bacteria and archaea provides adaptive immunity against mobile genetic elements. Type III CRISPR systems detect viral RNA, resulting in the activation of two regions of the Cas10 protein: an HD nuclease domain (which degrades viral DNA)1,2 and a cyclase domain (which synthesizes cyclic oligoadenylates from ATP)3-5. Cyclic oligoadenylates in turn activate defence enzymes with a CRISPR-associated Rossmann fold domain6, sculpting a powerful antiviral response7-10 that can drive viruses to extinction7,8. Cyclic nucleotides are increasingly implicated in host-pathogen interactions11-13. Here we identify a new family of viral anti-CRISPR (Acr) enzymes that rapidly degrade cyclic tetra-adenylate (cA4). The viral ring nuclease AcrIII-1 is widely distributed in archaeal and bacterial viruses and in proviruses. The enzyme uses a previously unknown fold to bind cA4 specifically, and a conserved active site to rapidly cleave this signalling molecule, allowing viruses to neutralize the type III CRISPR defence system. The AcrIII-1 family has a broad host range, as it targets cA4 signalling molecules rather than specific CRISPR effector proteins. Our findings highlight the crucial role of cyclic nucleotide signalling in the conflict between viruses and their hosts.


Subject(s)
CRISPR-Cas Systems/immunology , Endonucleases/metabolism , Host Microbial Interactions/immunology , Sulfolobus/virology , Viral Proteins/metabolism , Viruses/enzymology , Adenine Nucleotides/chemistry , Adenine Nucleotides/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , DNA, Viral/metabolism , Endonucleases/chemistry , Models, Molecular , Nucleotides, Cyclic/chemistry , Nucleotides, Cyclic/metabolism , Oligoribonucleotides/chemistry , Oligoribonucleotides/metabolism , Phylogeny , Signal Transduction , Sulfolobus/genetics , Sulfolobus/immunology , Sulfolobus/metabolism , Viral Proteins/chemistry , Viral Proteins/classification , Viruses/immunology
6.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38375885

ABSTRACT

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Subject(s)
Pseudouridine , RNA, Archaeal , RNA, Transfer , Sulfolobus , Pseudouridine/metabolism , Sulfolobus/genetics , Sulfolobus/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Archaeal/genetics , RNA, Archaeal/metabolism , RNA, Archaeal/chemistry , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , RNA Processing, Post-Transcriptional , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
7.
Proc Natl Acad Sci U S A ; 120(42): e2307717120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824526

ABSTRACT

Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.


Subject(s)
Archaeal Viruses , Sulfolobus , Archaeal Viruses/genetics , Archaeal Viruses/chemistry , Capsid/metabolism , Nucleoproteins/genetics , Capsid Proteins/genetics , Genome, Viral , Tomography
8.
RNA ; 29(5): 551-556, 2023 05.
Article in English | MEDLINE | ID: mdl-36759127

ABSTRACT

Analysis of the profile of the tRNA modifications in several Archaea allowed us to observe a novel modified uridine in the V-loop of several tRNAs from two species: Pyrococcus furiosus and Sulfolobus acidocaldarius Recently, Ohira and colleagues characterized 2'-phosphouridine (Up) at position 47 in tRNAs of thermophilic Sulfurisphaera tokodaii, as well as in several other archaea and thermophilic bacteria. From the presence of the gene arkI corresponding to the RNA kinase responsible for Up47 formation, they also concluded that Up47 should be present in tRNAs of other thermophilic Archaea Reanalysis of our earlier data confirms that the unidentified residue in tRNAs of both P. furiosus and S. acidocaldarius is indeed 2'-phosphouridine followed by m5C48. Moreover, we find this modification in several tRNAs of other Archaea and of the hyperthermophilic bacterium Aquifex aeolicus.


Subject(s)
Archaea , Sulfolobus , Archaea/genetics , Bacteria/genetics , Sulfolobus/genetics
9.
Nucleic Acids Res ; 51(4): 1707-1723, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36715325

ABSTRACT

Cell cycle regulation is of paramount importance for all forms of life. Here, we report that a conserved and essential cell cycle-specific transcription factor (designated as aCcr1) and its viral homologs control cell division in Sulfolobales. We show that the transcription level of accr1 reaches peak during active cell division (D-phase) subsequent to the expression of CdvA, an archaea-specific cell division protein. Cells over-expressing the 58-aa-long RHH (ribbon-helix-helix) family cellular transcription factor as well as the homologs encoded by large spindle-shaped viruses Acidianus two-tailed virus (ATV) and Sulfolobus monocaudavirus 3 (SMV3) display significant growth retardation and cell division failure, manifesting as enlarged cells with multiple chromosomes. aCcr1 over-expression results in downregulation of 17 genes (>4-fold), including cdvA. A conserved motif, aCcr1-box, located between the TATA-binding box and the translation initiation site of 13 out of the 17 highly repressed genes, is critical for aCcr1 binding. The aCcr1-box is present in the promoters and 5' UTRs of cdvA genes across Sulfolobales, suggesting that aCcr1-mediated cdvA repression is an evolutionarily conserved mechanism by which archaeal cells dictate cytokinesis progression, whereas their viruses take advantage of this mechanism to manipulate the host cell cycle.


Subject(s)
Sulfolobus , Transcription Factors , Transcription Factors/genetics , Archaea , Cell Division , Sulfolobus/genetics , Gene Expression Regulation
10.
Proc Natl Acad Sci U S A ; 119(31): e2119439119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35895681

ABSTRACT

Archaeal viruses with a spindle-shaped virion are abundant and widespread in extremely diverse environments. However, efforts to obtain the high-resolution structure of a spindle-shaped virus have been unsuccessful. Here, we present the structure of SSV19, a spindle-shaped virus infecting the hyperthermophilic archaeon Sulfolobus sp. E11-6. Our near-atomic structure reveals an unusual sevenfold symmetrical virus tail consisting of the tailspike, nozzle, and adaptor proteins. The spindle-shaped capsid shell is formed by seven left-handed helical strands, constructed of the hydrophobic major capsid protein, emanating from the highly glycosylated tail assembly. Sliding between adjacent strands is responsible for the variation of a virion in size. Ultrathin sections of the SSV19-infected cells show that SSV19 virions adsorb to the host cell membrane through the tail after penetrating the S-layer. The tailspike harbors a putative endo-mannanase domain, which shares structural similarity to a Bacteroides thetaiotaomicro endo-mannanase. Molecules of glycerol dibiphytanyl glycerol tetraether lipid were observed in hydrophobic clefts between the tail and the capsid shell. The nozzle protein resembles the stem and clip domains of the portals of herpesviruses and bacteriophages, implying an evolutionary relationship among the archaeal, bacterial, and eukaryotic viruses.


Subject(s)
Fuselloviridae , Sulfolobus , Capsid Proteins/chemistry , Fuselloviridae/chemistry , Fuselloviridae/genetics , Fuselloviridae/isolation & purification , Genome, Viral , Glycerol , Sulfolobus/virology , Virion/chemistry , Virion/genetics , Virion/isolation & purification
11.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38959058

ABSTRACT

The family Turriviridae includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family Turriviridae infect extremophilic archaea of the genera Sulfolobus and Saccharolobus. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Turriviridae, which is available at ictv.global/report/turriviridae.


Subject(s)
DNA Viruses , Genome, Viral , Virion , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/ultrastructure , Virion/ultrastructure , Archaeal Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/ultrastructure , Archaeal Viruses/physiology , Sulfolobus/virology , Sulfolobus/genetics , DNA, Viral/genetics
12.
Mol Cell ; 61(2): 287-96, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26725007

ABSTRACT

Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins.


Subject(s)
Archaeal Proteins/metabolism , DNA Helicases/metabolism , Replication Origin , Sulfolobus/enzymology , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , DNA Helicases/chemistry , Molecular Sequence Data , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary
13.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34341107

ABSTRACT

The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, ∼2-µm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus-host interactions in Archaea.


Subject(s)
Host-Pathogen Interactions/physiology , Lipothrixviridae/physiology , Lipothrixviridae/pathogenicity , Sulfolobus/virology , Cytoplasm/virology , Electron Microscope Tomography , Escherichia coli/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/metabolism , Virion/pathogenicity
14.
J Virol ; 96(24): e0143822, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36448807

ABSTRACT

All living organisms have evolved DNA damage response (DDR) strategies in coping with threats to the integrity of their genome. In response to DNA damage, Sulfolobus islandicus activates its DDR network in which Orc1-2, an ortholog of the archaeal Orc1/Cdc6 superfamily proteins, plays a central regulatory role. Here, we show that pretreatment with UV irradiation reduced virus genome replication in S. islandicus infected with the fusellovirus SSV2. Like treatment with UV or the DNA-damaging agent 4-nitroquinoline-1-oxide (NQO), infection with SSV2 facilitated the expression of orc1-2 and significantly raised the cellular level of Orc1-2. The inhibitory effect of UV irradiation on the virus DNA level was no longer apparent in the infected culture of an S. islandicus orc1-2 deletion mutant strain. On the other hand, the overexpression of orc1-2 decreased virus genomic DNA by ~102-fold compared to that in the parent strain. Furthermore, as part of the Orc1-2-mediated DDR response genes for homologous recombination repair (HRR), cell aggregation and intercellular DNA transfer were upregulated, whereas genes for cell division were downregulated. However, the HRR pathway remained functional in host inhibition of SSV2 genome replication in the absence of UpsA, a subunit of pili essential for intercellular DNA transfer. In agreement with this finding, lack of the general transcriptional activator TFB3, which controls the expression of the ups genes, only moderately affected SSV2 genome replication. Our results demonstrate that infection of S. islandicus by SSV2 triggers the host DDR pathway that, in return, suppresses virus genome replication. IMPORTANCE Extremophiles thrive in harsh habitats and thus often face a daunting challenge to the integrity of their genome. How these organisms respond to virus infection when their genome is damaged remains unclear. We found that the thermophilic archaeon Sulfolobus islandicus became more inhibitory to genome replication of the virus SSV2 after preinfection UV irradiation than without the pretreatment. On the other hand, like treatment with UV or other DNA-damaging agents, infection of S. islandicus by SSV2 triggers the activation of Orc1-2-mediated DNA damage response, including the activation of homologous recombination repair, cell aggregation and DNA import, and the repression of cell division. The inhibitory effect of pretreatment with UV irradiation on SSV2 genome replication was no longer observed in an S. islandicus mutant lacking Orc1-2. Our results suggest that DNA damage response is employed by S. islandicus as a strategy to defend against virus infection.


Subject(s)
Fuselloviridae , Sulfolobus , DNA Damage/genetics , DNA Repair/genetics , Fuselloviridae/genetics , Sulfolobus/genetics , Sulfolobus/radiation effects , Sulfolobus/virology , Virus Replication , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Ultraviolet Rays , 4-Nitroquinoline-1-oxide/pharmacology , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism
15.
Cell ; 133(5): 801-12, 2008 May 30.
Article in English | MEDLINE | ID: mdl-18510925

ABSTRACT

The XPD helicase (Rad3 in Saccharomyces cerevisiae) is a component of transcription factor IIH (TFIIH), which functions in transcription initiation and Nucleotide Excision Repair in eukaryotes, catalyzing DNA duplex opening localized to the transcription start site or site of DNA damage, respectively. XPD has a 5' to 3' polarity and the helicase activity is dependent on an iron-sulfur cluster binding domain, a feature that is conserved in related helicases such as FancJ. The xpd gene is the target of mutation in patients with xeroderma pigmentosum, trichothiodystrophy, and Cockayne's syndrome, characterized by a wide spectrum of symptoms ranging from cancer susceptibility to neurological and developmental defects. The 2.25 A crystal structure of XPD from the crenarchaeon Sulfolobus tokodaii, presented here together with detailed biochemical analyses, allows a molecular understanding of the structural basis for helicase activity and explains the phenotypes of xpd mutations in humans.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Sulfolobus/enzymology , Xeroderma Pigmentosum Group D Protein/chemistry , Xeroderma Pigmentosum Group D Protein/genetics , Amino Acid Substitution , Archaeal Proteins/metabolism , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Crystallography, X-Ray , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Structural Homology, Protein , Trichothiodystrophy Syndromes/genetics , Trichothiodystrophy Syndromes/metabolism , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/metabolism , Xeroderma Pigmentosum Group D Protein/metabolism
16.
Proc Natl Acad Sci U S A ; 117(33): 19643-19652, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32759221

ABSTRACT

Living organisms expend metabolic energy to repair and maintain their genomes, while viruses protect their genetic material by completely passive means. We have used cryo-electron microscopy (cryo-EM) to solve the atomic structures of two filamentous double-stranded DNA viruses that infect archaeal hosts living in nearly boiling acid: Saccharolobus solfataricus rod-shaped virus 1 (SSRV1), at 2.8-Å resolution, and Sulfolobus islandicus filamentous virus (SIFV), at 4.0-Å resolution. The SIFV nucleocapsid is formed by a heterodimer of two homologous proteins and is membrane enveloped, while SSRV1 has a nucleocapsid formed by a homodimer and is not enveloped. In both, the capsid proteins wrap around the DNA and maintain it in an A-form. We suggest that the A-form is due to both a nonspecific desolvation of the DNA by the protein, and a specific coordination of the DNA phosphate groups by positively charged residues. We extend these observations by comparisons with four other archaeal filamentous viruses whose structures we have previously determined, and show that all 10 capsid proteins (from four heterodimers and two homodimers) have obvious structural homology while sequence similarity can be nonexistent. This arises from most capsid residues not being under any strong selective pressure. The inability to detect homology at the sequence level arises from the sampling of viruses in this part of the biosphere being extremely sparse. Comparative structural and genomic analyses suggest that nonenveloped archaeal viruses have evolved from enveloped viruses by shedding the membrane, indicating that this trait may be relatively easily lost during virus evolution.


Subject(s)
Archaeal Viruses/chemistry , DNA Viruses/chemistry , DNA, Viral/chemistry , Sulfolobales/virology , Sulfolobus/virology , Archaeal Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/ultrastructure , Biological Evolution , Capsid/chemistry , Capsid/ultrastructure , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/ultrastructure , DNA, Viral/genetics , Extreme Environments , Genome, Viral , Phylogeny
17.
World J Microbiol Biotechnol ; 39(4): 90, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36752840

ABSTRACT

Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.


Subject(s)
Deoxyribonuclease (Pyrimidine Dimer) , Sulfolobus , Deoxyribonuclease (Pyrimidine Dimer)/chemistry , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Sulfolobus/genetics , Sulfolobus/metabolism , DNA Repair , DNA Damage , DNA
18.
Nucleic Acids Res ; 48(17): 9681-9693, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32833023

ABSTRACT

CRISPR-Cas system provides acquired immunity against invasive genetic elements in prokaryotes. In both bacteria and archaea, transcriptional factors play important roles in regulation of CRISPR adaptation and interference. In the model Crenarchaeon Sulfolobus islandicus, a CRISPR-associated factor Csa3a triggers CRISPR adaptation and activates CRISPR RNA transcription for the immunity. However, regulation of DNA repair systems for repairing the genomic DNA damages caused by the CRISPR self-immunity is less understood. Here, according to the transcriptome and reporter gene data, we found that deletion of the csa3a gene down-regulated the DNA damage response (DDR) genes, including the ups and ced genes. Furthermore, in vitro analyses demonstrated that Csa3a specifically bound the DDR gene promoters. Microscopic analysis showed that deletion of csa3a significantly inhibited DNA damage-induced cell aggregation. Moreover, the flow cytometry study and survival rate analysis revealed that the csa3a deletion strain was more sensitive to the DNA-damaging reagent. Importantly, CRISPR self-targeting and DNA transfer experiments revealed that Csa3a was involved in regulating Ups- and Ced-mediated repair of CRISPR-damaged host genomic DNA. These results explain the interplay between Csa3a functions in activating CRISPR adaptation and DNA repair systems, and expands our understanding of the lost link between CRISPR self-immunity and genome stability.


Subject(s)
Archaeal Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Repair , Sulfolobus/genetics , 5' Untranslated Regions , Archaeal Proteins/metabolism , Binding Sites , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA Damage , Gene Expression Profiling , Gene Expression Regulation, Archaeal , Genome, Archaeal , Mutation , Promoter Regions, Genetic , Sulfolobus/growth & development
19.
Nucleic Acids Res ; 48(16): 9273-9284, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32761152

ABSTRACT

Nucleic acid-binding proteins of the Sac10b family, also known as Alba, are widely distributed in Archaea. However, the physiological roles of these proteins have yet to be clarified. Here, we show that Sis10b, a member of the Sac10b family from the hyperthermophilic archaeon Sulfolobus islandicus, was active in RNA strand exchange, duplex RNA unwinding in vitro and RNA unfolding in a heterologous host cell. This protein exhibited temperature-dependent binding preference for ssRNA over dsRNA and was more efficient in RNA unwinding and RNA unfolding at elevated temperatures. Notably, alanine substitution of a highly conserved basic residue (K) at position 17 in Sis10b drastically reduced the ability of this protein to catalyse RNA strand exchange and RNA unwinding. Additionally, the preferential binding of Sis10b to ssRNA also depended on the presence of K17 or R17. Furthermore, normal growth was restored to a slow-growing Sis10b knockdown mutant by overproducing wild-type Sis10b but not by overproducing K17A in this mutant strain. Our results indicate that Sis10b is an RNA chaperone that likely functions most efficiently at temperatures optimal for the growth of S. islandicus, and K17 is essential for the chaperone activity of the protein.


Subject(s)
Archaeal Proteins/genetics , DNA-Binding Proteins/genetics , Molecular Chaperones/genetics , RNA/genetics , Archaea/genetics , Archaeal Proteins/chemistry , DNA-Binding Proteins/chemistry , Molecular Chaperones/chemistry , Protein Binding/genetics , RNA Folding/genetics , RNA, Double-Stranded/genetics , Sulfolobus/chemistry , Sulfolobus/genetics
20.
Nucleic Acids Res ; 48(11): 6326-6339, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32374860

ABSTRACT

Nucleotide excision repair (NER) is a major DNA repair pathway for a variety of DNA lesions. XPB plays a key role in DNA opening at damage sites and coordinating damage incision by nucleases. XPB is conserved from archaea to human. In archaea, XPB is associated with a nuclease Bax1. Here we report crystal structures of XPB in complex with Bax1 from Archaeoglobus fulgidus (Af) and Sulfolobus tokodaii (St). These structures reveal for the first time four domains in Bax1, which interacts with XPB mainly through its N-terminal domain. A Cas2-like domain likely helps to position Bax1 at the forked DNA allowing the nuclease domain to incise one arm of the fork. Bax1 exists in monomer or homodimer but forms a heterodimer exclusively with XPB. StBax1 keeps StXPB in a closed conformation and stimulates ATP hydrolysis by XPB while AfBax1 maintains AfXPB in the open conformation and reduces its ATPase activity. Bax1 contains two distinguished nuclease active sites to presumably incise DNA damage. Our results demonstrate that protein-protein interactions regulate the activities of XPB ATPase and Bax1 nuclease. These structures provide a platform to understand the XPB-nuclease interactions important for the coordination of DNA unwinding and damage incision in eukaryotic NER.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Repair , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Archaeoglobus fulgidus/chemistry , Catalytic Domain , Crystallography, X-Ray , DNA/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Solutions , Static Electricity , Sulfolobus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL