Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181.806
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Annu Rev Immunol ; 42(1): 179-206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38166256

ABSTRACT

T cell responses must be balanced to ensure adequate protection against malignant transformation and an array of pathogens while also limiting damage to healthy cells and preventing autoimmunity. T cell exhaustion serves as a regulatory mechanism to limit the activity and effector function of T cells undergoing chronic antigen stimulation. Exhausted T cells exhibit poor proliferative potential; high inhibitory receptor expression; altered transcriptome, epigenome, and metabolism; and, most importantly, reduced effector function. While exhaustion helps to restrain damage caused by aberrant T cells in settings of autoimmune disease, it also limits the ability of cells to respond against persistent infection and cancer, leading to disease progression. Here we review the process of T cell exhaustion, detailing the key characteristics and drivers as well as highlighting our current understanding of the underlying transcriptional and epigenetic programming. We also discuss how exhaustion can be targeted to enhance T cell functionality in cancer.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Animals , Neoplasms/immunology , Neoplasms/etiology , Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Epigenesis, Genetic , Lymphocyte Activation/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , T-Cell Exhaustion
2.
Annu Rev Immunol ; 42(1): 153-178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941602

ABSTRACT

The intestine is the largest peripheral lymphoid organ in animals, including humans, and interacts with a vast array of microorganisms called the gut microbiota. Comprehending the symbiotic relationship between the gut microbiota and our immune system is essential not only for the field of immunology but also for understanding the pathogenesis of various systemic diseases, including cancer, cardiometabolic disorders, and extraintestinal autoimmune conditions. Whereas microbe-derived antigens are crucial for activating the intestinal immune system, particularly T and B cells, as environmental cues, microbes and their metabolites play a critical role in directing the differentiation of these immune cells. Microbial metabolites are regarded as messengers from the gut microbiota, since bacteria have the ability to produce unique molecules that humans cannot, and many immune cells in the intestine express receptors for these molecules. This review highlights the distinct relationships between microbial metabolites and the differentiation and function of the immune system.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Gastrointestinal Microbiome/immunology , Cell Differentiation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Bacteria/immunology , Bacteria/metabolism
3.
Annu Rev Immunol ; 41: 513-532, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37126420

ABSTRACT

Many of the pathways that underlie the diversification of naive T cells into effector and memory subsets, and the maintenance of these populations, remain controversial. In recent years a variety of experimental tools have been developed that allow us to follow the fates of cells and their descendants. In this review we describe how mathematical models provide a natural language for describing the growth, loss, and differentiation of cell populations. By encoding mechanistic descriptions of cell behavior, models can help us interpret these new datasets and reveal the rules underpinning T cell fate decisions, both at steady state and during immune responses.


Subject(s)
Immunologic Memory , T-Lymphocytes , Humans , Animals , Cell Differentiation , T-Lymphocyte Subsets , CD8-Positive T-Lymphocytes
4.
Annu Rev Immunol ; 40: 559-587, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35113732

ABSTRACT

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell-microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.


Subject(s)
Microbiota , T-Lymphocytes , Animals , Humans
5.
Annu Rev Immunol ; 40: 1-14, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34871102

ABSTRACT

I've had serious misgivings about writing this article, because from living the experience day by day, it's hard to believe my accomplishments merit the attention. To skirt this roadblock, I forced myself to pretend I was in a conversation with my trainees, trying to distill the central driving forces of my career in science. The below chronicles my evolution from would-be astronaut/ballerina to budding developmental biologist to devoted T cell immunologist. It traces my work from a focus on intrathymic events that mold developing T cells into self-major histocompatibility complex (MHC)-restricted lymphocytes to extrathymic events that fine-tune the T cell receptor (TCR) repertoire and impose the finishing touches on T cell maturation. It is a story of a few personal attributes multiplied by generous mentors, good luck, hard work, perseverance, and knowing when to step down.


Subject(s)
Major Histocompatibility Complex , T-Lymphocytes , Animals , Cell Differentiation , Humans , Thymus Gland
6.
Annu Rev Immunol ; 40: 169-193, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35044794

ABSTRACT

The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.


Subject(s)
Neoplasms , Tumor Microenvironment , Animals , B-Lymphocytes , Endothelial Cells , Humans , T-Lymphocytes
7.
Annu Rev Immunol ; 40: 45-74, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35471840

ABSTRACT

The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Animals , B7-H1 Antigen , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/metabolism , T-Lymphocytes , Tumor Microenvironment
8.
Annu Rev Immunol ; 39: 449-479, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902310

ABSTRACT

The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system-microbiota interactions.


Subject(s)
Microbiota , Adaptive Immunity , Animals , B-Lymphocytes , Humans , Immunity, Innate , T-Lymphocytes
9.
Annu Rev Immunol ; 39: 639-665, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33646858

ABSTRACT

Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.


Subject(s)
Helminthiasis , Helminths , Parasites , Animals , Host-Parasite Interactions , Humans , Immunity, Innate , Lymphocytes , T-Lymphocytes
10.
Annu Rev Immunol ; 38: 397-419, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31990620

ABSTRACT

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Lymphopoiesis , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Acetylation , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Histones , Humans , Lymphopoiesis/genetics , Lymphopoiesis/immunology , Methylation , Protein Processing, Post-Translational , T-Lymphocytes/cytology , T-Lymphocytes/enzymology , Ubiquitination
11.
Annu Rev Immunol ; 38: 123-145, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32045313

ABSTRACT

Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. The specific T cell epitopes recognized in an individual are determined by genetic factors such as the MHC molecules the individual expresses, in parallel to the individual's environmental exposure history. The complexity and importance of T cell epitope mapping have motivated the development of computational approaches that predict what T cell epitopes are likely to be recognized in a given individual or in a broader population. Such predictions guide experimental epitope mapping studies and enable computational analysis of the immunogenic potential of a given protein sequence region.


Subject(s)
Epitopes, T-Lymphocyte/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Computational Biology/methods , Disease Susceptibility , Histocompatibility Antigens/immunology , Humans , Ligands , Machine Learning , Protein Binding
12.
Annu Rev Immunol ; 38: 673-703, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340576

ABSTRACT

Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Host-Pathogen Interactions/immunology , AIDS Vaccines/administration & dosage , Animals , Clinical Trials as Topic , Disease Management , Genetic Variation , HIV Infections/virology , HIV-1/genetics , Humans , Immunization, Passive , RNA, Viral , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics
13.
Annu Rev Immunol ; 38: 1-21, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31594433

ABSTRACT

It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αß receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.


Subject(s)
Disease Susceptibility , Obsessive-Compulsive Disorder/etiology , Obsessive-Compulsive Disorder/metabolism , Animals , Autoimmunity , Biomarkers , Cell Death , Cytokines/metabolism , Disease Susceptibility/immunology , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Humans , Immunity, Innate , Obsessive-Compulsive Disorder/psychology , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Superantigens/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism
14.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30526160

ABSTRACT

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Immunotherapy, Adoptive/trends , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/physiology , Animals , Genetic Engineering , Humans , Neoplasms/immunology , T-Lymphocytes/transplantation , United States , United States Food and Drug Administration
15.
Annu Rev Immunol ; 37: 173-200, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30550719

ABSTRACT

Malignant transformation of cells depends on accumulation of DNA damage. Over the past years we have learned that the T cell-based immune system frequently responds to the neoantigens that arise as a consequence of this DNA damage. Furthermore, recognition of neoantigens appears an important driver of the clinical activity of both T cell checkpoint blockade and adoptive T cell therapy as cancer immunotherapies. Here we review the evidence for the relevance of cancer neoantigens in tumor control and the biological properties of these antigens. We discuss recent technological advances utilized to identify neoantigens, and the T cells that recognize them, in individual patients. Finally, we discuss strategies that can be employed to exploit cancer neoantigens in clinical interventions.


Subject(s)
Antigens, Neoplasm/immunology , Autoantigens/immunology , Cancer Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Immunotherapy, Adoptive/methods , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/genetics , Autoantigens/genetics , Epitopes, T-Lymphocyte/genetics , Humans , Immunity, Cellular , Lymphocyte Activation , Precision Medicine , T-Lymphocytes/transplantation
16.
Annu Rev Immunol ; 37: 547-570, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30699000

ABSTRACT

Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.


Subject(s)
Computational Biology/methods , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Adaptive Immunity , Animals , Antigens/immunology , Antigens/metabolism , Cell Differentiation , Clonal Selection, Antigen-Mediated , Epitopes, T-Lymphocyte/metabolism , High-Throughput Nucleotide Sequencing , Humans , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism
17.
Annu Rev Immunol ; 37: 457-495, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30676822

ABSTRACT

Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.


Subject(s)
Costimulatory and Inhibitory T-Cell Receptors/metabolism , Immunotherapy/methods , Neoplasms/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/physiology , Virus Diseases/immunology , Animals , Cellular Senescence , Chronic Disease , Clonal Anergy , Epigenesis, Genetic , Humans , Neoplasms/therapy , Virus Diseases/therapy
18.
Annu Rev Immunol ; 37: 201-224, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30576253

ABSTRACT

The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.


Subject(s)
Actins/metabolism , Actomyosin/metabolism , Antigen-Presenting Cells/metabolism , Cytoskeleton/metabolism , Immunological Synapses/metabolism , T-Lymphocytes/metabolism , Animals , Antigen Presentation , Humans , Lymphocyte Activation
19.
Annu Rev Immunol ; 36: 461-488, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677474

ABSTRACT

Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.


Subject(s)
Energy Metabolism , Immunity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Humans , Immunologic Memory , Immunotherapy , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mitochondria/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/cytology
20.
Annu Rev Immunol ; 36: 843-864, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29490162

ABSTRACT

Recent progress in both conceptual and technological approaches to human immunology have rejuvenated a field that has long been in the shadow of the inbred mouse model. This is a healthy development both for the clinical relevance of immunology and for the fact that it is a way to gain access to the wealth of phenomenology in the many human diseases that involve the immune system. This is where we are likely to discover new immunological mechanisms and principals, especially those involving genetic heterogeneity or environmental influences that are difficult to model effectively in inbred mice. We also suggest that there are likely to be novel immunological mechanisms in long-lived, less fecund mammals such as human beings since they must remain healthy far longer than short-lived rodents in order for the species to survive.


Subject(s)
Immune System/physiology , Immunity , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biological Evolution , Biological Variation, Population , Clonal Deletion/immunology , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory , Models, Animal , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL