Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.319
Filter
Add more filters

Publication year range
1.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38582079

ABSTRACT

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Subject(s)
Induced Pluripotent Stem Cells , Neurons , Tauopathies , tau Proteins , Humans , Induced Pluripotent Stem Cells/metabolism , tau Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Neurons/metabolism , Neurons/pathology , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Brain/metabolism , Brain/pathology , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/genetics , Cell Differentiation , Mutation , Autophagy
2.
Cell ; 180(4): 633-644.e12, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32032505

ABSTRACT

Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease.


Subject(s)
Protein Processing, Post-Translational , Tauopathies/metabolism , tau Proteins/chemistry , Aged , Cryoelectron Microscopy , Female , Humans , Male , Middle Aged , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Tauopathies/pathology , tau Proteins/metabolism
4.
Nature ; 615(7953): 668-677, 2023 03.
Article in English | MEDLINE | ID: mdl-36890231

ABSTRACT

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Subject(s)
Brain , Microglia , Neurofibrillary Tangles , T-Lymphocytes , Tauopathies , Animals , Mice , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Brain/immunology , Brain/metabolism , Brain/pathology , Microglia/immunology , Microglia/metabolism , Neurofibrillary Tangles/immunology , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , tau Proteins/immunology , tau Proteins/metabolism , Tauopathies/immunology , Tauopathies/metabolism , Tauopathies/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Plaque, Amyloid/immunology , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/pathology , Clone Cells/immunology , Clone Cells/metabolism , Clone Cells/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immunity, Innate
5.
Nature ; 605(7909): 310-314, 2022 05.
Article in English | MEDLINE | ID: mdl-35344985

ABSTRACT

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Subject(s)
Aging , Amyloid , Amyloidosis , Brain , Membrane Proteins , Nerve Tissue Proteins , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Brain/metabolism , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Plaque, Amyloid/metabolism , Tauopathies/metabolism , tau Proteins/metabolism
6.
Genome Res ; 34(4): 590-605, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599684

ABSTRACT

Missense mutations in the gene encoding the microtubule-associated protein TAU (current and approved symbol is MAPT) cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human TAU in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas-mediated gene editing to model frontotemporal dementia caused by the TAU P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for Tau P251L display age-dependent neurodegeneration, display metabolic defects, and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies, we performed single-cell RNA sequencing on approximately 130,000 cells from brains of Tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified. Gene expression was also altered in glial cells, suggestive of non-cell-autonomous regulation. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell type-specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy that faithfully recapitulates the genetic context and phenotypic features of the human disease, and use the results of comprehensive single-cell sequencing analysis to outline pathways of neurotoxicity and highlight the potential role of non-cell-autonomous changes in glia.


Subject(s)
Disease Models, Animal , Drosophila Proteins , Neuroglia , Neurons , Tauopathies , tau Proteins , Animals , Neuroglia/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Neurons/metabolism , Neurons/pathology , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Signal Transduction , Drosophila melanogaster/genetics , Gene Knock-In Techniques , Drosophila/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Animals, Genetically Modified , Gene Editing , CRISPR-Cas Systems
7.
Nature ; 594(7861): 117-123, 2021 06.
Article in English | MEDLINE | ID: mdl-34012113

ABSTRACT

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Subject(s)
Protein Biosynthesis/genetics , Proteostasis/genetics , RNA, Antisense/genetics , Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Aged , Animals , Binding Sites , Brain/metabolism , Brain/pathology , Case-Control Studies , Cell Differentiation , Disease Progression , Female , Humans , Internal Ribosome Entry Sites/genetics , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/pathology , Ribosomes/metabolism , tau Proteins/biosynthesis
8.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568974

ABSTRACT

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Subject(s)
Prions , Tauopathies , Humans , tau Proteins/metabolism , Tauopathies/metabolism , Protein Isoforms/metabolism , Prions/metabolism , Peptides , Amino Acids
9.
Trends Biochem Sci ; 47(4): 301-313, 2022 04.
Article in English | MEDLINE | ID: mdl-35045944

ABSTRACT

Many neurodegenerative diseases, including Alzheimer's, originate from the conversion of proteins into pathogenic conformations. The microtubule-associated protein tau converts into ß-sheet-rich amyloid conformations, which underlie pathology in over 25 related tauopathies. Structural studies of tau amyloid fibrils isolated from human tauopathy tissues have revealed that tau adopts diverse structural polymorphs, each linked to a different disease. Molecular chaperones play central roles in regulating tau function and amyloid assembly in disease. New data supports the model that chaperones selectively recognize different conformations of tau to limit the accumulation of proteotoxic species. The challenge now is to understand how chaperones influence disease processes across different tauopathies, which will help guide the development of novel conformation-specific diagnostic and therapeutic strategies.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/chemistry , Humans , Molecular Chaperones/metabolism , Protein Conformation, beta-Strand , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/chemistry , tau Proteins/metabolism
10.
Nature ; 580(7802): 283-287, 2020 04.
Article in English | MEDLINE | ID: mdl-32050258

ABSTRACT

Corticobasal degeneration (CBD) is a neurodegenerative tauopathy-a class of disorders in which the tau protein forms insoluble inclusions in the brain-that is characterized by motor and cognitive disturbances1-3. The H1 haplotype of MAPT (the tau gene) is present in cases of CBD at a higher frequency than in controls4,5, and genome-wide association studies have identified additional risk factors6. By histology, astrocytic plaques are diagnostic of CBD7,8; by SDS-PAGE, so too are detergent-insoluble, 37 kDa fragments of tau9. Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease10, CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats11-15. This distinguishes such '4R' tauopathies from Pick's disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer's disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)16. Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer's disease, Pick's disease and CTE17-19. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.


Subject(s)
Basal Ganglia Diseases/pathology , Cerebral Cortex/pathology , Cryoelectron Microscopy , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/chemistry , tau Proteins/ultrastructure , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Basal Ganglia Diseases/metabolism , Brain Chemistry , Cerebral Cortex/metabolism , Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Humans , Male , Middle Aged , Models, Molecular , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , Protein Folding , tau Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 120(3): e2217759120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626563

ABSTRACT

Tau aggregates are a hallmark of multiple neurodegenerative diseases and can contain RNAs and RNA-binding proteins, including serine/arginine repetitive matrix protein 2 (SRRM2) and pinin (PNN). However, how these nuclear proteins mislocalize and their influence on the prion-like propagation of tau aggregates is unknown. We demonstrate that polyserine repeats in SRRM2 and PNN are necessary and sufficient for recruitment to tau aggregates. Moreover, we show tau aggregates preferentially grow in association with endogenous cytoplasmic assemblies-mitotic interchromatin granules and cytoplasmic speckles (CSs)-which contain SRRM2 and PNN. Polyserine overexpression in cells nucleates assemblies that are sites of tau aggregate growth. Further, modulating the levels of polyserine-containing proteins results in a corresponding change in tau aggregation. These findings define a specific protein motif, and cellular condensates, that promote tau aggregate propagation. As CSs form in induced pluripotent stem cell (iPSC) derived neurons under inflammatory or hyperosmolar stress, they may affect tau aggregate propagation in neurodegenerative disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Tauopathies , Humans , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism , Peptides , Alzheimer Disease/metabolism
12.
Proc Natl Acad Sci U S A ; 120(1): e2207250120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574656

ABSTRACT

The pathological accumulation of the microtubule binding protein tau drives age-related neurodegeneration in a variety of disorders, collectively called tauopathies. In the most common tauopathy, Alzheimer's disease (AD), the accumulation of pathological tau strongly correlates with cognitive decline. The underlying molecular mechanisms that drive neurodegeneration in tauopathies remain incompletely understood and no effective disease modifying pharmacological interventions currently exist. Here, we show that tau toxicity depends on the highly conserved nuclear E3 ubiquitin ligase adaptor protein SPOP in a Caenorhabditis elegans model of tauopathy. Loss of function mutations in the C. elegans spop-1 gene significantly improves behavioral deficits in tau transgenic animals, while neuronal overexpression of SPOP-1 protein significantly worsens behavioral deficits. In addition, loss of spop-1 rescues a variety of tau-related phenotypes including the accumulation of total and phosphorylated tau protein, neurodegeneration, and shortened lifespan. Knockdown of SPOP-1's E3 ubiquitin ligase cul-3/Cullin3 does not improve tauopathy suggesting a non-degradative mechanism of action for SPOP-1. Suppression of disease-related phenotypes occurs independently of the nuclear speckle resident poly(A)-binding protein SUT-2/MSUT2. MSUT2 modifies tauopathy in mammalian neurons and in AD. Our work identifies SPOP as a novel modifier of tauopathy and a conceptual pathway for therapeutic intervention.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Tauopathies , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals, Genetically Modified , Alzheimer Disease/metabolism , Disease Models, Animal , Mammals/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Poly(A)-Binding Proteins/metabolism
13.
J Biol Chem ; 300(1): 105545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072056

ABSTRACT

Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Cerebellum/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism , Male , Female , Young Adult , Adult , Middle Aged , Aged
14.
Hum Mol Genet ; 32(14): 2292-2306, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37000013

ABSTRACT

Neurodegenerative diseases exhibiting the pathological accumulation of tau such as Alzheimer's disease and related disorders still have no disease-modifying treatments and the molecular mechanisms of neurodegeneration remain unclear. To discover additional suppressor of tauopathy (sut) genes that mediate or modulate the toxicity of pathological tau, we performed a classical genetic screen using a tau transgenic Caenorhabditis elegans model. From this screen, we identified the suppressing mutation W292X in sut-6, the C. elegans homolog of human NIPP1, which truncates the C-terminal RNA-binding domain. Using CRISPR-based genome editing approaches, we generated null and additional C-terminally truncated alleles in sut-6 and found that loss of sut-6 or sut-6(W292X) suppresses tau-induced behavioral locomotor deficits, tau protein accumulation and neuron loss. The sut-6(W292X) mutation showed stronger and semi-dominant suppression of tau toxicity while sut-6 deletion acted recessively. Neuronal overexpression of SUT-6 protein did not significantly alter tau toxicity, but neuronal overexpression of SUT-6 W292X mutant protein reduced tau-mediated deficits. Epistasis studies showed tauopathy suppression by sut-6 occurs independent of other known nuclear speckle-localized suppressors of tau such as sut-2, aly-1/aly-3 and spop-1. In summary, we have shown that sut-6/NIPP1 modulates tau toxicity and found a dominant mutation in the RNA-binding domain of sut-6 which strongly suppresses tau toxicity. This suggests that altering RNA-related functions of SUT-6/NIPP1 instead of complete loss of SUT-6/NIPP1 will provide the strongest suppression of tau.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Tauopathies , Animals , Humans , tau Proteins/genetics , tau Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Tauopathies/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Disease Models, Animal
15.
EMBO J ; 40(19): e107260, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34410010

ABSTRACT

The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc-EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc-EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington's disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.


Subject(s)
Aging/metabolism , Disease Susceptibility , Genes, Reporter , Mice, Transgenic , Neurons/metabolism , Proteostasis , Aging/genetics , Animals , Cells, Cultured , Disease Models, Animal , Gene Expression , Hippocampus/metabolism , Hippocampus/pathology , Huntington Disease/etiology , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Aggregates , Protein Aggregation, Pathological , Protein Folding , Proteostasis Deficiencies/etiology , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Tauopathies/etiology , Tauopathies/metabolism , Tauopathies/pathology
16.
Annu Rev Neurosci ; 40: 189-210, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28772101

ABSTRACT

A pathway from the natively unfolded microtubule-associated protein Tau to a highly structured amyloid fibril underlies human Tauopathies. This ordered assembly causes disease and represents the gain of toxic function. In recent years, evidence has accumulated to suggest that Tau inclusions form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of pathology is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighboring cells. In mice, the intracerebral injection of Tau inclusions induces the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Conformational differences between Tau aggregates from transgenic mouse brain and in vitro assembled recombinant protein account for the greater seeding potency of brain aggregates. Short fibrils constitute the major species of seed-competent Tau in the brains of transgenic mice. The existence of multiple human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.


Subject(s)
Nerve Degeneration/metabolism , Neurofibrillary Tangles/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Humans , Nerve Degeneration/pathology , Neurofibrillary Tangles/pathology , Phosphorylation , Tauopathies/pathology
17.
Mol Ther ; 32(4): 1080-1095, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38310353

ABSTRACT

Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.


Subject(s)
MicroRNAs , Tauopathies , Mice , Humans , Animals , Aged , tau Proteins/genetics , tau Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tauopathies/genetics , Tauopathies/therapy , Tauopathies/metabolism , Neurons/metabolism , Phenotype , Mice, Transgenic , Disease Models, Animal
18.
Bioessays ; 45(8): e2200138, 2023 08.
Article in English | MEDLINE | ID: mdl-37489532

ABSTRACT

The etiology of Tauopathies, a diverse class of neurodegenerative diseases associated with the Microtubule Associated Protein (MAP) Tau, is usually described by a common mechanism in which Tau dysfunction results in the loss of axonal microtubule stability. Here, we reexamine and build upon the canonical disease model to encompass other Tau functions. In addition to regulating microtubule dynamics, Tau acts as a modulator of motor proteins, a signaling hub, and a scaffolding protein. This diverse array of functions is related to the dynamic nature of Tau isoform expression, post-translational modification (PTM), and conformational flexibility. Thus, there is no single mechanism that can describe Tau dysfunction. The effects of specific pathogenic mutations or aberrant PTMs need to be examined on all of the various functions of Tau in order to understand the unique etiology of each disease state.


Subject(s)
Neurodegenerative Diseases , Tauopathies , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Axonal Transport , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Protein Processing, Post-Translational , Microtubules/metabolism
19.
Proc Natl Acad Sci U S A ; 119(34): e2108870119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969759

ABSTRACT

Tau protein aggregates are a major driver of neurodegeneration and behavioral impairments in tauopathies, including in Alzheimer's disease (AD). Apolipoprotein E4 (APOE4), the highest genetic risk factor for late-onset AD, has been shown to exacerbate tau hyperphosphorylation in mouse models. However, the exact mechanisms through which APOE4 induces tau hyperphosphorylation remains unknown. Here, we report that the astrocyte-secreted protein glypican-4 (GPC-4), which we identify as a binding partner of APOE4, drives tau hyperphosphorylation. We discovered that first, GPC-4 preferentially interacts with APOE4 in comparison to APOE2, considered to be a protective allele to AD, and second, that postmortem APOE4-carrying AD brains highly express GPC-4 in neurotoxic astrocytes. Furthermore, the astrocyte-secreted GPC-4 induced both tau accumulation and propagation in vitro. CRISPR/dCas9-mediated activation of GPC-4 in a tauopathy mouse model robustly induced tau hyperphosphorylation. In the absence of GPC4, APOE4-induced tau hyperphosphorylation was largely diminished using in vitro tau fluorescence resonance energy transfer-biosensor cells, in human-induced pluripotent stem cell-derived astrocytes and in an in vivo mouse model. We further show that APOE4-mediated surface trafficking of APOE receptor low-density lipoprotein receptor-related protein 1 through GPC-4 can be a gateway to tau spreading. Collectively, these data support that APOE4-induced tau hyperphosphorylation is directly mediated by GPC-4.


Subject(s)
Alzheimer Disease , Astrocytes , Glypicans , tau Proteins , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Disease Models, Animal , Glypicans/metabolism , Humans , Mice , Mice, Transgenic , Phosphorylation , Tauopathies/metabolism , Tauopathies/physiopathology , tau Proteins/metabolism
20.
J Neurosci ; 43(16): 2988-3006, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36868851

ABSTRACT

Tauopathies including Alzheimer's disease, are characterized by progressive cognitive decline, neurodegeneration, and intraneuronal aggregates comprised largely of the axonal protein Tau. It has been unclear whether cognitive deficits are a consequence of aggregate accumulation thought to compromise neuronal health and eventually lead to neurodegeneration. We use the Drosophila tauopathy model and mixed-sex populations to reveal an adult onset pan-neuronal Tau accumulation-dependent decline in learning efficacy and a specific defect in protein synthesis-dependent memory (PSD-M), but not in its protein synthesis-independent variant. We demonstrate that these neuroplasticity defects are reversible on suppression of new transgenic human Tau expression and surprisingly correlate with an increase in Tau aggregates. Inhibition of aggregate formation via acute oral administration of methylene blue results in re-emergence of deficient memory in animals with suppressed human Tau (hTau)0N4R expression. Significantly, aggregate inhibition results in PSD-M deficits in hTau0N3R-expressing animals, which present elevated aggregates and normal memory if untreated with methylene blue. Moreover, methylene blue-dependent hTau0N4R aggregate suppression within adult mushroom body neurons also resulted in emergence of memory deficits. Therefore, deficient PSD-M on human Tau expression in the Drosophila CNS is not a consequence of toxicity and neuronal loss because it is reversible. Furthermore, PSD-M deficits do not result from aggregate accumulation, which appears permissive, if not protective of processes underlying this memory variant.SIGNIFICANCE STATEMENT Intraneuronal Tau aggregate accumulation has been proposed to underlie the cognitive decline and eventual neurotoxicity that characterizes the neurodegenerative dementias known as tauopathies. However, we show in three experimental settings that Tau aggregates in the Drosophila CNS do not impair but rather appear to facilitate processes underlying protein synthesis-dependent memory within affected neurons.


Subject(s)
Drosophila , Tauopathies , Animals , Humans , Drosophila/metabolism , Methylene Blue , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Animals, Genetically Modified , Memory Disorders , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL