Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Cell Res ; 434(1): 113871, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38049080

ABSTRACT

Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin ß4 (Tß4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tß4 by examining Tß4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tß4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tß4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tß4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tß4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tß4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tß4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tß4 could be a new diagnostic marker for intestinal barrier defects.


Subject(s)
Inflammatory Bowel Diseases , Thymosin , Animals , Female , Humans , Mice , Autophagy/drug effects , Cell Line, Tumor , Colitis/metabolism , Colitis/pathology , Colon/metabolism , Colon/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , Sirolimus/administration & dosage , Thymosin/genetics , Thymosin/metabolism , Up-Regulation
2.
BMC Biol ; 22(1): 244, 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39443925

ABSTRACT

BACKGROUND: Thymosin beta 4 (Tß4) is a monomeric actin-binding protein that plays many roles in biological activities. However, some studies on the role of Tß4 in central axon regeneration have yielded contradictory results. Previous research has focused primarily on cultured cells, leading to a deficiency in in vivo experimental evidence. Therefore, we used a single axon injury model of Mauthner cells in zebrafish larvae to investigate the role of Tß4 in central axon regeneration in vivo. RESULTS: Our results demonstrated that knockout of Tß4 impaired axon regeneration, whereas overexpression of Tß4 promoted axon regeneration. Moreover, this promotion is mediated through the interaction between Tß4 and G-actin. Furthermore, our results suggest that the binding of Tß4 to G-actin promotes actin polymerization rather than depolymerization. In the rapid escape behavior test, larvae with damaged axons presented impaired tail muscle control, resulting in a lack of normal tail bending, termed the straight tail phenomenon. The proportion of straight tails was significantly negatively correlated with axon regeneration length, suggesting that it is a new indicator for assessing rapid escape behavior recovery. Finally, the results showed that the overexpression of Tß4 effectively restored the functionality of rapid escape behaviors mediated by Mauthner cells. CONCLUSIONS: Our results provide evidence that Tß4 promotes central axon regeneration in vivo through binding to G-actin and suggest that Tß4 could serve as a potential polypeptide drug for clinical therapy.


Subject(s)
Actins , Axons , Nerve Regeneration , Thymosin , Zebrafish Proteins , Zebrafish , Animals , Actins/metabolism , Axons/metabolism , Axons/physiology , Larva/metabolism , Larva/physiology , Nerve Regeneration/physiology , Polymerization , Thymosin/metabolism , Thymosin/genetics , Zebrafish/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
3.
Aesthetic Plast Surg ; 48(11): 2179-2189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409346

ABSTRACT

BACKGROUND: Autologous fat grafting (AFG) has emerged as a highly sought-after plastic surgery procedure, although its success has been hampered by the uncertain fat survival rate. Current evidence suggests that adipose-derived stem cells (ADSCs) may contribute to fat retention in AFG. In previous studies, it was confirmed that thymosin beta 4 (Tß4) could enhance fat survival in vivo, although the precise mechanism remains unclear. METHODS: ADSCs were isolated from patients undergoing liposuction and their proliferation, apoptosis, anti-apoptosis, and migration were analyzed under Tß4 stimulation using cell counting kit-8, flow cytometry, wound healing assay, and real-time quantitative PCR. The mRNA levels of genes relating to angiogenesis and Hippo signaling were also determined. RESULTS: Tß4 at 100 ng/mL (p-value = 0.0171) and 1000 ng/mL (p-value = 0.0054) significantly increased ADSC proliferation from day 1 compared to the control group (0 ng/mL). In addition, the mRNA levels of proliferation-associated genes were elevated in the Tß4 group. Furthermore, Tß4 enhanced the anti-apoptotic ability of ADSCs when stimulated with Tß4 and an apoptotic induction reagent (0 ng/mL vs. 1000 ng/mL, p-value = 0.011). Crucially, the mRNA expression levels of angiogenesis-related genes and critical genes in the Hippo pathway were affected by Tß4 in ADSCs. CONCLUSIONS: Tß4 enhances adipose viability in AFG via facilitating ADSC proliferation and reducing apoptosis, and acts as a crucial positive regulator of ADSC-associated angiogenesis. Additionally, Tß4 could be accountable for the phenotypic adjustment of ADSCs by regulating the Hippo pathway. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Adipose Tissue , Thymosin , Adult , Female , Humans , Adipocytes , Adipose Tissue/cytology , Adipose Tissue/transplantation , Apoptosis/drug effects , Cell Proliferation , Cell Survival/drug effects , Cells, Cultured , Flow Cytometry , Graft Survival , In Vitro Techniques , Stem Cells , Thymosin/genetics , Thymosin/pharmacology , Transplantation, Autologous
4.
Circulation ; 145(7): 531-548, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35157519

ABSTRACT

BACKGROUND: Rheumatic heart valve disease (RHVD) is a leading cause of cardiovascular death in low- and middle-income countries and affects predominantly women. The underlying mechanisms of chronic valvular damage remain unexplored and regulators of sex predisposition are unknown. METHODS: Proteomics analysis of human heart valves (nondiseased aortic valves, nondiseased mitral valves [NDMVs], valves from patients with rheumatic aortic valve disease, and valves from patients with rheumatic mitral valve disease; n=30) followed by system biology analysis identified ProTα (prothymosin alpha) as a protein associated with RHVD. Histology, multiparameter flow cytometry, and enzyme-linked immunosorbent assay confirmed the expression of ProTα. In vitro experiments using peripheral mononuclear cells and valvular interstitial cells were performed using multiparameter flow cytometry and quantitative polymerase chain reaction. In silico analysis of the RHVD and Streptococcuspyogenes proteomes were used to identify mimic epitopes. RESULTS: A comparison of NDMV and nondiseased aortic valve proteomes established the baseline differences between nondiseased aortic and mitral valves. Thirteen unique proteins were enriched in NDMVs. Comparison of NDMVs versus valves from patients with rheumatic mitral valve disease and nondiseased aortic valves versus valves from patients with rheumatic aortic valve disease identified 213 proteins enriched in rheumatic valves. The expression of the 13 NDMV-enriched proteins was evaluated across the 213 proteins enriched in diseased valves, resulting in the discovery of ProTα common to valves from patients with rheumatic mitral valve disease and valves from patients with rheumatic aortic valve disease. ProTα plasma levels were significantly higher in patients with RHVD than in healthy individuals. Immunoreactive ProTα colocalized with CD8+ T cells in RHVD. Expression of ProTα and estrogen receptor alpha correlated strongly in circulating CD8+ T cells from patients with RHVD. Recombinant ProTα induced expression of the lytic proteins perforin and granzyme B by CD8+ T cells as well as higher estrogen receptor alpha expression. In addition, recombinant ProTα increased human leukocyte antigen class I levels in valvular interstitial cells. Treatment of CD8+ T cells with specific estrogen receptor alpha antagonist reduced the cytotoxic potential promoted by ProTα. In silico analysis of RHVD and Spyogenes proteomes revealed molecular mimicry between human type 1 collagen epitope and bacterial collagen-like protein, which induced CD8+ T-cell activation in vitro. CONCLUSIONS: ProTα-dependent CD8+ T-cell cytotoxicity was associated with estrogen receptor alpha activity, implicating ProTα as a potential regulator of sex predisposition in RHVD. ProTα facilitated recognition of type 1 collagen mimic epitopes by CD8+ T cells, suggesting mechanisms provoking autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Collagen Type I/metabolism , Estrogen Receptor alpha/metabolism , Heart Valve Diseases/etiology , Heart Valve Diseases/metabolism , Protein Precursors/metabolism , Thymosin/analogs & derivatives , Amino Acid Sequence , Collagen Type I/chemistry , Computational Biology/methods , Disease Susceptibility , Epitopes, T-Lymphocyte/immunology , Heart Valve Diseases/diagnosis , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Models, Biological , Models, Molecular , Protein Binding , Protein Precursors/chemistry , Protein Precursors/genetics , Proteome , Proteomics/methods , Rheumatic Heart Disease/diagnosis , Rheumatic Heart Disease/etiology , Rheumatic Heart Disease/metabolism , Structure-Activity Relationship , Thymosin/chemistry , Thymosin/genetics , Thymosin/metabolism
5.
Development ; 147(23)2020 12 11.
Article in English | MEDLINE | ID: mdl-33310787

ABSTRACT

Planar cell polarity (PCP) is essential for tissue morphogenesis and homeostasis; however, the mechanisms that orchestrate the cell shape and packing dynamics required to establish PCP are poorly understood. Here, we identified a major role for the globular (G)-actin-binding protein thymosin-ß4 (TMSB4X) in PCP establishment and cell adhesion in the developing epidermis. Depletion of Tmsb4x in mouse embryos hindered eyelid closure and hair-follicle angling owing to PCP defects. Tmsb4x depletion did not preclude epidermal cell adhesion in vivo or in vitro; however, it resulted in abnormal structural organization and stability of adherens junction (AJ) due to defects in filamentous (F)-actin and G-actin distribution. In cultured keratinocytes, TMSB4X depletion increased the perijunctional G/F-actin ratio and decreased G-actin incorporation into junctional actin networks, but it did not change the overall actin expression level or cellular F-actin content. A pharmacological treatment that increased the G/F-actin ratio and decreased actin polymerization mimicked the effects of Tmsb4x depletion on both AJs and PCP. Our results provide insights into the regulation of the actin pool and its involvement in AJ function and PCP establishment.


Subject(s)
Cell Polarity/genetics , Embryonic Development/genetics , Morphogenesis/genetics , Thymosin/genetics , Actin Cytoskeleton/genetics , Actins/genetics , Adherens Junctions/genetics , Animals , Cell Adhesion/genetics , Cell Shape/genetics , Epidermal Cells/metabolism , Epidermis/growth & development , Homeostasis/genetics , Keratinocytes/metabolism , Mice , Microfilament Proteins/genetics
6.
Genet Res (Camb) ; 2023: 5517445, 2023.
Article in English | MEDLINE | ID: mdl-38026448

ABSTRACT

Glioma is a highly aggressive form of brain cancer characterized by limited treatment options and poor patient prognosis. In this study, we aimed to elucidate the oncogenic role of thymosin beta-10 (TMSB10) in glioma through comprehensive analyses of patient data from the TCGA and GTEx databases. Our investigation encompassed several key aspects, including the analysis of patients' clinical characteristics, survival analysis, in vitro and in vivo functional experiments, and the exploration of correlations between TMSB10 expression and immune cell infiltration. Our findings revealed a significant upregulation of TMSB10 expression in glioma tissues compared to normal brain tissues, with higher expression levels observed in tumors of advanced histological grades. Moreover, we observed positive correlations between TMSB10 expression and patient age, while no significant association with gender was detected. Additionally, TMSB10 exhibited marked elevation in gliomas with wild-type IDH and noncodeletion of 1p/19q. Survival analysis indicated that high TMSB10 expression was significantly associated with worse overall survival, disease-specific survival, and progression-free survival in glioma patients. Functionally, knockdown of TMSB10 in glioma cells resulted in reduced cellular growth rates and impaired tumor growth in xenograft models. Furthermore, our study revealed intriguing correlations between TMSB10 expression and immune cell infiltration within the tumor microenvironment. Specifically, TMSB10 showed negative associations with plasmacytoid dendritic cells (pDC) and γδ T cells (Tgd), while displaying positive correlations with neutrophils and macrophages. These findings collectively provide valuable insights into the oncogenic properties of TMSB10 in glioma, suggesting its potential as a therapeutic target and a biomarker for patient stratification.


Subject(s)
Brain Neoplasms , Glioma , Thymosin , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Clinical Relevance , Glioma/genetics , Glioma/pathology , Prognosis , Survival Analysis , Thymosin/genetics , Thymosin/metabolism , Tumor Microenvironment
7.
Hepatobiliary Pancreat Dis Int ; 22(4): 373-382, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36041971

ABSTRACT

BACKGROUND: It has been demonstrated that thymosin ß4 (Tß4) could inflect the severity of acute-on-chronic hepatitis B liver failure (ACHBLF), but the relationship between its methylation status and the prognosis of liver failure is not clear. This study aimed to determine Tß4 promoter methylation status in patients with ACHBLF and to evaluate its prognostic value. METHODS: The study recruited 115 patients with ACHBLF, 80 with acute-on-chronic hepatitis B pre-liver failure (pre-ACHBLF), and 86 with chronic hepatitis B (CHB). In addition, there were 36 healthy controls (HCs) from the Department of Hepatology, Qilu Hospital of Shandong University. The 115 patients with ACHBLF were divided into three subgroups: 33 with early stage ACHBLF (E-ACHBLF), 42 with mid-stage ACHBLF (M-ACHBLF), and 40 with advanced stage ACHBLF (A-ACHBLF). Tß4 promoter methylation status in peripheral blood mononuclear cells (PBMCs) was measured by methylation-specific polymerase chain reaction, and mRNA was detected by quantitative real-time polymerase chain reaction. RESULTS: Methylation frequency of Tß4 was significantly higher in patients with ACHBLF than in those with pre-ACHBLF, CHB or HCs. However, expression of Tß4 mRNA showed the opposite trend. In patients with ACHBLF, Tß4 promoter methylation status correlated negatively with mRNA levels. The 3-month mortality of ACHBLF in the methylated group was significantly higher than that in the unmethylated group. Also, Tß4 promoter methylation frequency was lower in survivors than in non-survivors. When used to predict the 1-, 2-, and 3-month incidence of ACHBLF, Tß4 methylation status was better than the model for end-stage liver disease (MELD) score. The predictive value of Tß4 methylation was higher than that of MELD score for the mortality of patients with E-ACHBLF and M-ACHBLF, but not for A-ACHBLF. CONCLUSIONS: Tß4 methylation might be an important early marker for predicting disease incidence and prognosis in patients with ACHBLF.


Subject(s)
Acute-On-Chronic Liver Failure , End Stage Liver Disease , Hepatitis B, Chronic , Hepatitis B , Thymosin , Humans , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/genetics , Leukocytes, Mononuclear/metabolism , Severity of Illness Index , Hepatitis B/metabolism , Acute-On-Chronic Liver Failure/diagnosis , Acute-On-Chronic Liver Failure/genetics , Prognosis , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , Thymosin/genetics , Thymosin/metabolism
8.
Mol Biol (Mosk) ; 57(6): 1006-1016, 2023.
Article in Russian | MEDLINE | ID: mdl-38062956

ABSTRACT

The aim of this work was to study the effects of thymosin-1 alpha (Tα1) on the anti-inflammatory response of RAW 264.7 macrophages cultured in the presence of lipopolysaccharide (LPS) from the walls of gram-negative bacteria. As well, we evaluated production of pro-inflammatory cytokines and the activity of the NF-κB and SAPK/JNK signaling pathways. In addition, the level of expression of a number of genes that regulate cell apoptosis, as well as the activity of receptors involved in the pro-inflammatory response, was determined. First, the addition of Tα1 normalized the level of cytokine production to varying degrees, with a particularly noticeable effect on IL-1ß and IL-6. Second, the addition of Tα1 normalized the activity of the NF-κB and SAPK/JNK signaling cascades and the expression of the Tlr4 gene. Third, Tα1 significantly reduced p53 and the activity of the P53 gene, which is a marker of cell apoptosis. Fourth, it was shown that the increase in Ar-1 gene expression under the influence of LPS was significantly reduced using Tα1. Thus, it was found that the presence of Tα1 in the RAW 264.7 cell culture medium significantly reduced the level of the pro-inflammatory response of cells.


Subject(s)
NF-kappa B , Thymosin , Animals , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , RAW 264.7 Cells , Endotoxins , Lipopolysaccharides/pharmacology , Thymosin/genetics , Thymosin/pharmacology , Cytokines/metabolism
9.
Haematologica ; 107(12): 2846-2858, 2022 12 01.
Article in English | MEDLINE | ID: mdl-34348450

ABSTRACT

Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin ß4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin ß4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin ß4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin ß4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability.


Subject(s)
Blood Platelets , Thrombosis , Thymosin , Animals , Mice , Actin Cytoskeleton/metabolism , Actins/metabolism , Blood Platelets/metabolism , Mice, Knockout , Thrombosis/genetics , Thrombosis/metabolism , Thymosin/genetics
10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008976

ABSTRACT

Thymosin ß4 (Tß4) was extracted forty years agofrom calf thymus. Since then, it has been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angiogenesis, and anti-inflammatory processes. Tß4 has also been implicated in tumor metastasis and neurodegeneration. However, the precise roles and mechanism(s) of action of Tß4 in these processes remain largely unknown, with the binding of the G-actin protein being insufficient to explain these multi-actions. Here we identify for the first time the important role of Tß4 mechanism in ferroptosis, an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions along the peptide and show that the presence of Tß4 in cell growing medium inhibits erastin and glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tß4 increases the expression of oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tß4 is an endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the literature data of parallel involvement of Tß4 and ferroptosis in different human pathologies, mainly cancer and neurodegeneration. Our findings confronted with literature data show that controlled Tß4 release could command on/off switching of ferroptosis and may provide novel therapeutic opportunities in cancer and tissue degeneration pathologies.


Subject(s)
Ferroptosis/drug effects , Iron Chelating Agents/chemistry , Iron Chelating Agents/pharmacology , Thymosin/chemistry , Thymosin/pharmacology , Amino Acid Sequence , Ferroptosis/genetics , Gene Expression , Humans , Hydrogen Bonding , Models, Biological , Models, Molecular , Protein Conformation , Spectrum Analysis , Structure-Activity Relationship , Thymosin/genetics
11.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36233010

ABSTRACT

A generally accepted hypothesis for the initial activation of an immune or autoimmune response argues that alarmins are released from injured, dying and/or activated immune cells, and these products complex with receptors that activate signal transduction pathways and recruit immune cells to the site of injury where the recruited cells are stimulated to initiate immune and/or cellular repair responses. While there are multiple diverse families of alarmins such as interleukins (IL), heat-shock proteins (HSP), Toll-like receptors (TLR), plus individual molecular entities such as Galectin-3, Calreticulin, Thymosin, alpha-Defensin-1, RAGE, and Interferon-1, one phylogenetically conserved family are the Annexin proteins known to promote an extensive range of biomolecular and cellular products that can directly and indirectly regulate inflammation and immune activities. For the present report, we examined the temporal expression profiles of the 12 mammalian annexin genes (Anxa1-11 and Anxa13), applying our temporal genome-wide transcriptome analyses of ex vivo salivary and lacrimal glands from our C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's Syndrome (SS), a human autoimmune disease characterized primarily by severe dry mouth and dry eye symptoms. Results indicate that annexin genes Anax1-7 and -11 exhibited upregulated expressions and the initial timing for these upregulations occurred as early as 8 weeks of age and prior to any covert signs of a SS-like disease. While the profiles of the two glands were similar, they were not identical, suggesting the possibility that the SS-like disease may not be uniform in the two glands. Nevertheless, this early pre-clinical and concomitant upregulated expression of this specific set of alarmins within the immune-targeted organs represents a potential target for identifying the pre-clinical stage in human SS as well, a fact that would clearly impact future interventions and therapeutic strategies.


Subject(s)
Annexins , Lacrimal Apparatus , Sjogren's Syndrome , Thymosin , Alarmins/genetics , Alarmins/metabolism , Animals , Annexins/genetics , Annexins/metabolism , Calreticulin/metabolism , Disease Models, Animal , Galectin 3/metabolism , Heat-Shock Proteins/metabolism , Humans , Interferons/metabolism , Lacrimal Apparatus/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , RNA/metabolism , Thymosin/genetics , Transcriptome , alpha-Defensins/genetics
12.
J Cell Mol Med ; 25(3): 1350-1358, 2021 02.
Article in English | MEDLINE | ID: mdl-33393222

ABSTRACT

The hair follicle (HF) is an important mini-organ of the skin, composed of many types of cells. Dermal papilla cells are important signalling components that guide the proliferation, upward migration and differentiation of HF stem cell progenitor cells to form other types of HF cells. Thymosin ß4 (Tß4), a major actin-sequestering protein, is involved in various cellular responses and has recently been shown to play key roles in HF growth and development. Endogenous Tß4 can activate the mouse HF cycle transition and affect HF growth and development by promoting the migration and differentiation of HF stem cells and their progeny. In addition, exogenous Tß4 increases the rate of hair growth in mice and promotes cashmere production by increasing the number of secondary HFs (hair follicles) in cashmere goats. However, the molecular mechanisms through which Tß4 promotes HF growth and development have rarely been reported. Herein, we review the functions and mechanisms of Tß4 in HF growth and development and describe the endogenous and exogenous actions of Tß4 in HFs to provide insights into the roles of Tß4 in HF growth and development.


Subject(s)
Hair Follicle/cytology , Hair Follicle/physiology , Organogenesis , Thymosin/genetics , Thymosin/metabolism , Animals , Gene Expression Regulation/drug effects , Growth and Development/drug effects , Growth and Development/genetics , Hair Follicle/drug effects , Humans , Organogenesis/drug effects , Signal Transduction , Structure-Activity Relationship , Thymosin/chemistry , Thymosin/pharmacology
13.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33468581

ABSTRACT

Thymosin beta-4 (Tß4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tß4-overexpressing transgenic (Tg) mice to investigate the role of Tß4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tß4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tß4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tß4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tß4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1ß and TNF-α proteins was also reduced in Tß4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tß4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tß4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tß4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tß4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.


Subject(s)
Disease Resistance/genetics , Ectopic Gene Expression , Legionella pneumophila/physiology , Legionnaires' Disease/genetics , Legionnaires' Disease/microbiology , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/microbiology , Thymosin/genetics , Animals , Cytokines/metabolism , Disease Models, Animal , Host-Pathogen Interactions/genetics , Humans , Immunohistochemistry , Immunophenotyping , Legionnaires' Disease/pathology , Ligands , Male , Mice , Mice, Transgenic , Pneumonia, Bacterial/pathology , Sepsis/genetics , Sepsis/microbiology , Sepsis/pathology , Toll-Like Receptors/metabolism
14.
J Neuroinflammation ; 18(1): 146, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183019

ABSTRACT

BACKGROUND: Thymosin ß4 (Tß4) is the most abundant member of the ß-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer's disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tß4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. METHODS: Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aß accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. RESULTS: We demonstrated that Tß4 protein level elevated in all APP/PS1 mice. Over-expression of Tß4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aß accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tß4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. CONCLUSIONS: These results suggest that Tß4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/metabolism , NF-kappa B/metabolism , Neuroglia/metabolism , Thymosin/genetics , Thymosin/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Astrocytes/metabolism , Disease Models, Animal , Female , Male , Memory , Mice , Mice, Transgenic , Microglia/metabolism , Neurons/metabolism , Phenotype , Presenilin-1/genetics , Signal Transduction
15.
Mol Carcinog ; 60(9): 597-606, 2021 09.
Article in English | MEDLINE | ID: mdl-34081824

ABSTRACT

Gastric cancer (GC) is histologically classified into intestinal-type gastric cancer (IGC) and diffuse-type gastric cancer (DGC), and the latter is poorly differentiated and highly metastatic. In this study, using quantitative real-time polymerase chain reaction, we described a complete protocol for in vivo CRISPR-Cas9-based knockout screening of essential genes for DGC metastasis. We functionally screened 30 candidate genes using our mouse DGC models lacking Smad4, p53, and E-cadherin. Pooled knockout mouse DGC cells were transplanted into a spleen of syngeneic immunocompetent mice to study clonal advantages in context of a complex process of liver metastasis. Tmsb4x (thymosin beta-4 X-linked), Hmox1, Ifitm3, Ldhb, and Itgb7 were identified as strong candidate genes that promote metastasis. In particular, Tmsb4x enhanced DGC metastasis and stomach organoid-generated tumor growth in in vivo transplantation models. Tmsb4x promoted tumor clonogenicity and anoikis resistance. In situ hybridization analysis showed that Tmsb4x is highly expressed in E-cadherin-negative mouse DGC models compared with mouse IGC and intestinal cancer models. E-cadherin deficiency also increased Tmsb4x expression in stomach organoids via Wnt signaling activation. Collectively, these results demonstrate that Tmsb4x promotes DGC metastasis. In addition, this experimental system will aid in the identification of novel target genes responsible for DGC metastasis.


Subject(s)
Biomarkers, Tumor , CRISPR-Cas Systems , Gene Knockout Techniques , Real-Time Polymerase Chain Reaction , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Thymosin/genetics , Animals , Disease Models, Animal , Gene Expression , Humans , Mice , Neoplasm Metastasis , Signal Transduction
16.
J Gastroenterol Hepatol ; 36(11): 3102-3112, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34114679

ABSTRACT

BACKGROUND AND AIM: The thymosin beta 10 (TMSB10) was originally identified from the thymus, which plays a key role in the development of many cancers. However, the underlying molecular mechanisms of TMSB10 involved in GC have not been understood. METHODS: We sought to determine the expression of TMSB10 in human GC tissues and illustrate whether it is correlated with the clinical pathologic characteristics and prognosis in GC patients. Its roles and potential mechanisms in regulating tumor growth, invasion, and angiogenesis were evaluated by TMSB10 knockdown/overexpression of GC cells in vitro and ex vivo. RESULTS: Marked overexpression of TMSB10 protein expression was observed in GC cells and tissues, which was associated with the advanced tumor stage and lymph nodes (LN) metastasis of GC patients. Furthermore, prognostic analysis showed that GC patients with high TMSB10 expression had a remarkably shorter survival and acted as an important factor for predicting poor overall survival in GC patients. Moreover, TMSB10 overexpression promoted, while TMSB10 knockdown the proliferation, EMT process, and angiogenesis of GC cells. CONCLUSION: The study highlights that TMSB10 may hold promise as potential prognosis prediction biomarker for the diagnosis of GC and a potential therapeutic target, which will facilitate the development of a novel therapeutic strategy against GC.


Subject(s)
Stomach Neoplasms , Thymosin , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Neoplasm Invasiveness , Neovascularization, Pathologic , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Thymosin/biosynthesis , Thymosin/genetics
17.
Biosci Biotechnol Biochem ; 85(4): 805-813, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33686397

ABSTRACT

PTEN/AKT signaling cascade is frequently activated in various cancers, including lung cancer. The downstream effector of this signaling cascade is poorly understood. ß-Thymosin 10 (TMSB10) functions as an oncogene or tumor suppressors in cancers, whereas its significance in lung cancer remains unknown. In this study, we showed that the activation of PTEN/AKT signaling promoted the expression of TMSB10. Based on the TCGA database, TMSB10 was upregulated in lung cancer tissues and its overexpression was correlated with poor prognosis of lung cancer patients. Functional experiments demonstrated that TMSB10 knockdown suppressed, while its overexpression promoted the proliferation, growth, and migration of lung cancer cells. Apoptosis and epithelial-mesenchymal transition were also regulated by TMSB10. We therefore suggest that TMSB10 is a novel oncogene for lung cancer. Targeting TMSB10 may benefit lung cancer patients with activated PTEN/AKT signaling.


Subject(s)
Lung Neoplasms/pathology , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thymosin/physiology , Up-Regulation , Apoptosis/physiology , Epithelial-Mesenchymal Transition/genetics , Gene Knockdown Techniques , Humans , Prognosis , Signal Transduction , Survival Analysis , Thymosin/genetics
18.
J Cell Physiol ; 235(4): 3270-3279, 2020 04.
Article in English | MEDLINE | ID: mdl-31612500

ABSTRACT

Thymosin ß4 (Tß4), a G-actin-sequestering secreted peptide, improves neurovascular remodeling and central nervous system plasticity, which leads to neurological recovery in many neurological diseases. Inflammatory response adjustment and tissue inflammation consequences from neurological injury are vital for neurological recovery. The innate or nonspecific immune system is made of different components. The Toll-like receptor pro-inflammatory signaling pathway, which is one of these components, regulates tissue injury. The main component of the Toll-like/IL-1 receptor signaling pathway, which is known as IRAK1, can be regulated by miR-146a and regulates NF-κB expression. Due to the significant role of Tß4 in oligodendrocytes, neurons, and microglial cells in neurological recovery, it is suggested that Tß4 regulates the Toll-like receptor (TLR) pro-inflammatory signaling pathway by upregulating miR-146a in neurological disorders. However, further investigations on the role of Tß4 in regulating the expression of miR146a and TLR signaling pathway in the immune response adjustment in neurological disorders provides an insight into mechanisms of action and the possibility of Tß4 therapeutic effect enhancement.


Subject(s)
Inflammation/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , MicroRNAs/genetics , Neurodegenerative Diseases/genetics , Thymosin/genetics , Humans , Inflammation/pathology , Interleukin-1/genetics , NF-kappa B/genetics , Neurodegenerative Diseases/pathology , Signal Transduction/genetics , Toll-Like Receptors/genetics
19.
Biochem Biophys Res Commun ; 522(1): 264-269, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31759625

ABSTRACT

We previously showed that prothymosin alpha (ProTα) improves cerebral ischemia-induced motor dysfunction. Our recent study also demonstrated that heterozygous ProTα deletion exhibited an enhanced anxiety-like behavior in mice. However, it remains elusive which brain regions or cells are related to these phenotypes. Here we generated conditional Gγ7-specific ProTα knockout mice using G protein γ7 subunit gene (Gng7)-cre promoter to see the brain robustness roles of ProTα in the striatum and hippocampus. The younger conditional ProTα (Gng7) knockout mice at the age of 10 weeks showed no significant phenotypes in motor dysfunction in the Rotarod test and locomotor activity in the open-field test, whereas significant motor dysfunction was obtained by 15 min transient middle cerebral artery occlusion (tMCAO)-induced cerebral ischemia. The aged conditional ProTα (Gng7) knockout mice at the age of 20 weeks showed hypolocomotor activity with less center time in the open-field test and impaired motor coordination in the Rotarod test without ischemia. Thus, this study suggests that ProTα has important roles in the maintenance of motor coordination and anxiety-like behavior.


Subject(s)
Anxiety/genetics , GTP-Binding Protein gamma Subunits/genetics , Locomotion , Protein Precursors/genetics , Thymosin/analogs & derivatives , Aging , Animals , Anxiety/physiopathology , Brain Ischemia/genetics , Brain Ischemia/physiopathology , Female , Gene Deletion , Male , Mice , Mice, Knockout , Psychomotor Performance , Thymosin/genetics
20.
IUBMB Life ; 72(11): 2432-2443, 2020 11.
Article in English | MEDLINE | ID: mdl-32918845

ABSTRACT

OBJECTIVE: DNA methyltransferases (DNMTs) take on a relevant role in epigenetic control of cancer proliferation and cell survival. However, the molecular mechanisms underlying the establishment and maintenance of DNA methylation in human cancer remain to be fully elucidated. This study was to investigate that how DNMT1 affected the biological characteristics of colorectal cancer (CRC) cells via modulating methylation of microRNA (miR)-152-3p and thymosin ß 10 (TMSB10) expression. METHODS: DNMT1, miR-152-3p, and TMSB10 expression, and the methylation of miR-152-3p in CRC tissues and cells were detected. SW-480 and HCT-116 CRC cells were transfected with DNMT1 or miR-152-3p-related sequences or plasmids to explore their characters in biological functions of CRC cells. The binding relationship between DNMT1 and miR-152-3p and the targeting relationship between miR-152-3p and TMSB10 were analyzed. The tumor growth was also detected in vivo. RESULTS: Upregulated DNMT1, TMSB10, reduced miR-152-3p, and methylated miR-152-3p were detected in CRC tissues and cells. Silenced DNMT1 or upregulated miR-152-3p reduced TMSB10 expression and suppressed CRC progression and tumor growth. Moreover, elevated DNMT1 could reverse the effect of miR-152-3p upregulation on CRC development and tumor growth. DNMT1 maintained methylation of miR-152-3p. TMSB10 was the direct target gene of miR-152-3p. CONCLUSION: The study highlights that silenced DNMT1 results in non-methylated miR-152-3p to depress TMSB10 expression, thereby inhibiting CRC development, which provides a new approach for CRC therapy.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Thymosin/metabolism , Adult , Aged , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Female , Humans , Male , Middle Aged , Neoplasm Invasiveness , Prognosis , Survival Rate , Thymosin/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL