Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
Add more filters

Publication year range
1.
Chemistry ; 30(39): e202401400, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38736421

ABSTRACT

Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3 r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3 r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.


Subject(s)
Antineoplastic Agents , Coumarins , DNA Topoisomerases, Type I , Topoisomerase I Inhibitors , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/chemistry , Humans , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Oxidation-Reduction , Umbelliferones/chemistry , Umbelliferones/pharmacology , Drug Screening Assays, Antitumor
2.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38518997

ABSTRACT

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Subject(s)
Antineoplastic Agents , Coumarins , Heterocyclic Compounds, 4 or More Rings , Isoquinolines , Topoisomerase I Inhibitors , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/metabolism , Drug Screening Assays, Antitumor , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacology , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Drug Design , Coumarins/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology
3.
Bioorg Chem ; 147: 107412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696845

ABSTRACT

The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.


Subject(s)
Antineoplastic Agents , DNA Topoisomerases, Type I , Fingolimod Hydrochloride , Molecular Docking Simulation , Topoisomerase I Inhibitors , Humans , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/chemical synthesis , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Dynamics Simulation , MCF-7 Cells
4.
Bioorg Chem ; 152: 107723, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39182258

ABSTRACT

Colorectal cancer (CRC) remains one of the most prevalent malignant tumors of the digestive system, yet the availability of safe and effective chemotherapeutic agents for clinical use remains limited. Camptothecin (CPT) and its derivatives, though approved for cancer treatment, have encountered significant challenges in clinical application due to their low bioavailability and high systemic toxicity. Strategic modification at the 7-position of CPT enables the development of novel CPT derivatives with high activity. In the present study, a series of compounds incorporating aminoureas, amino thioureas, and acylamino thioureas as substituents at the 7-position were screened. These compounds were subsequently evaluated for their cytotoxicity against the human gastric cancer (GC) cell line AGS and the CRC cell line HCT116. Two derivatives, XSJ05 (IC50 = 0.006 ± 0.003 µM) and XSJ07 (IC50 = 0.013 ± 0.003 µM), exhibited remarkably effective anti-CRC activity, being better than TPT. In addition, they have a better safety profile. In vitro mechanistic studies revealed that XSJ05 and XSJ07 exerted their inhibitory effects on CRC cell proliferation by suppressing the activity of topoisomerase I (Topo I). This suppression triggers DNA double-strand breaks, leads to DNA damage and subsequently causes CRC cells to arrest in the G2/M phase. Ultimately, the cells undergo apoptosis. Collectively, these findings indicate that XSJ05 and XSJ07 possess superior activity coupled with favorable safety profiles, suggesting their potential as lead compounds for the development of CRC therapeutics.


Subject(s)
Antineoplastic Agents , Apoptosis , Camptothecin , Cell Proliferation , Colorectal Neoplasms , DNA Topoisomerases, Type I , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , DNA Topoisomerases, Type I/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Molecular Structure , Apoptosis/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Cell Line, Tumor
5.
Arch Pharm (Weinheim) ; 357(9): e2400217, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38864845

ABSTRACT

A series of tetrahydrobenzo[b]thiophene derivatives was designed and synthesized as dual topoisomerase (Topo) I/II inhibitors implicating potential DNA intercalation. Ethyl-2-amino-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-4-carboxylate (1) was prepared by modification of the Gewald reaction procedure using a Fe2O3 nanocatalyst and then it was used as a building block for the synthesis of tetrahydrobenzo[b]thiophene candidates (2-14). Interestingly, compound 14 showed the best cytotoxic potential against hepatocellular, colorectal, and breast cancer cell lines (IC50 = 7.79, 8.10, and 3.53 µM), respectively, surpassing doxorubicin at breast cancer (IC50 = 4.17 µM). Meanwhile, the Topo I and II inhibition assay displayed that compound 3 could exhibit the best inhibitory potential among the investigated candidates (IC50 = 25.26 and 10.01 nM), respectively, in comparison to camptothecin (IC50 = 28.34 nM) and doxorubicin (IC50 = 11.01 nM), as reference standards. In addition, the DNA intercalation assay showed that compound 14 could display the best binding affinity with an IC50 value of 77.82 µM in comparison to doxorubicin (IC50 = 58.03 µM). Furthermore, cell cycle and apoptosis analyses described that compound 3 prompts the G1 phase arrest in michigan cancer foundation-7 cancer cells and increases the apoptosis ratio by 29.31% with respect to untreated cells (2.25%). Additionally, the conducted molecular docking assured the promising binding of the investigated members toward Topo I and II with potential DNA intercalation. Accordingly, the synthesized compounds could be treated as promising anticancer candidates for future optimization.


Subject(s)
Antineoplastic Agents , Drug Design , Drug Screening Assays, Antitumor , Intercalating Agents , Thiophenes , Topoisomerase I Inhibitors , Topoisomerase II Inhibitors , Humans , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Thiophenes/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Intercalating Agents/pharmacology , Intercalating Agents/chemical synthesis , Intercalating Agents/chemistry , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type II/metabolism , Apoptosis/drug effects , DNA , DNA Topoisomerases, Type I/metabolism , Pharmacophore
6.
Bioorg Med Chem Lett ; 57: 128517, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34952177

ABSTRACT

This work describes the first synthesis of diethyl 6,6a,7,11b-tetrahydro-5H-indeno[2,1-c]quinolinylphosphonates 5, diethyl 7H-indeno[2,1-c]quinolinylphosphonates 6 and diethyl 7-oxo-7H-indeno[2,1-c]quinolinylphosphonates 7, which were prepared in good to high overall yields. The synthetic route involves a multicomponent reaction of 2-phosphonateaniline, aldehydes and indene as olefin and allows the selective generation of three stereogenic centres in a short, efficient and reliable manner. The selective dehydrogenation of 1,2,3,4-tetrahydroindenoquinolines leads to the formation of corresponding indenoquinolines, and subsequent oxidation of methylene group of the indenoquinolines allows the access to indenoquinolinones.


Subject(s)
Antineoplastic Agents/pharmacology , Indenes/pharmacology , Phosphorous Acids/pharmacology , Quinolines/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Human Umbilical Vein Endothelial Cells , Humans , Indenes/chemical synthesis , Phosphorous Acids/chemical synthesis , Quinolines/chemical synthesis , Stereoisomerism , Topoisomerase I Inhibitors/chemical synthesis
7.
Bioorg Med Chem Lett ; 41: 127998, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33794318

ABSTRACT

A facile one-pot synthesis of C-ring substituted angular luotonins has been realized via a methanesulfonic acid mediated aza-Nazarov-Friedlander condensation sequence on quinazolinonyl enones. Topoisomerase I (topo-I) inhibition studies revealed that the angular luotonin library (7a-7l) and their regioisomeric analogs (linear luotonins, 8a-8l) are weak negative modulators, compared to camptothecin. These results would fare well for the design of topo-I-inert luotonins for non-oncological applications such as anti-fungal and insecticide lead developments. Surprisingly, the tricyclic vasicinones (9h, 9i, and 9j) showed better topo-I inhibition compared to pentacyclic C-aryl luotonins providing a novel pharmacophore for further explorations.


Subject(s)
Alkaloids/pharmacology , DNA Topoisomerases, Type I/metabolism , Drug Design , Pyrroles/pharmacology , Quinones/pharmacology , Topoisomerase I Inhibitors/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Quinones/chemical synthesis , Quinones/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
8.
Bioorg Med Chem Lett ; 41: 127976, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33766765

ABSTRACT

A series of 1,4-naphthoquinone derivatives of lawsone (1), 6-hydroxy-1,4-naphthoquinone (2), and juglone (3) were synthesized by alkylation, acylation, and sulfonylation reactions. The yields of lawsone derivatives 1a-1k (type A), 6-hydroxy-1,4-naphthoquinone derivatives 2a-2j (type B), and juglone derivatives 3a-3h (type C) were 52-99%, 53-96%, and 28-95%, respectively. All compounds were tested in vitro for the cytotoxicity against human oral epidermoid carcinoma (KB) and cervix epithelioid carcinoma (HeLa) cells and their structure-activity relationship was studied. Compound 3c was found to be most potent in KB cell line (IC50 = 1.39 µM). Some compounds were evaluated for DNA topoisomerase I inhibition. Compounds 2c, 3, 3a, and 3d showed topoisomerase inhibition activity with IC50 values of 8.3-91 µM. Standard redox potentials (E°) of all naphthoquinones in phosphate buffer at pH 7.2 were examined by means of cyclic voltammetry. A definite correlation has been found between the redox potentials and inhibitory effects of type A compounds.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Naphthoquinones/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , KB Cells , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Oxidation-Reduction , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
9.
Bioorg Med Chem Lett ; 40: 127954, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33744440

ABSTRACT

Natural products (NPs) have played a crucial role in the discovery and development of antitumor drugs. However, the high structural complexity of NPs generally results in unfavorable physicochemical profiles and poor drug-likeness. A powerful strategy to tackle this obstacle is the structural simplification of NPs by truncating nonessential structures. Herein, a series of tetrahydro-ß-carboline derivatives were designed by elimination of the D ring of NP evodiamine. Structure-activity relationship studies led to the discovery of compound 45, which displayed highly potent antitumor activity against all the tested cancer cell lines and excellent in vivo antitumor activity in the HCT116 xenograft model with low toxicity. Further mechanistic research indicated that compound 45 acted by dual Top1/2 inhibition and induced caspase-dependent cell apoptosis coupled with G2/M cell cycle arrest. This proof-of-concept study validated the effectiveness of structural simplification in NP-based drug development, discovered compound 45 as a potent antitumor lead compound and enriched the structure-activity relationships of evodiamine.


Subject(s)
Antineoplastic Agents/therapeutic use , Carbolines/therapeutic use , Neoplasms/drug therapy , Topoisomerase I Inhibitors/therapeutic use , Topoisomerase II Inhibitors/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carbolines/chemical synthesis , Carbolines/pharmacology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , HCT116 Cells , Humans , Male , Mice, Nude , Molecular Structure , Proof of Concept Study , Quinazolines/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Xenograft Model Antitumor Assays
10.
Inorg Chem ; 60(18): 14174-14189, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34477373

ABSTRACT

Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Molecular docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Phosphines/pharmacology , Ruthenium/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Ligands , Phosphines/chemistry , Ruthenium/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Tumor Cells, Cultured
11.
Bioorg Med Chem ; 40: 116177, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33962152

ABSTRACT

The synthesis of 1,8-naphthyridine derivatives fused with other heterocycles, such as chromenes and quinolines, as well as their behaviour as topoisomerase I inhibitors is studied. The preparation is carried out through a direct and simple process as an intramolecular [4 + 2] cycloaddition reaction between functionalized aldimines, obtained by the condensation of 2-aminopyridine and unsaturated aldehydes, and olefins. In particular, while no clear inhibitory activity is observed for chromeno[4,3-b][1,8]naphthyridine fused heterocycles, a very different result is observed for quinolino[4,3-b][1,8]naphthyridine derivatives. Experimental assays indicated that quinolino[4,3-b][1,8]naphthyridines inhibited the topoisomerase I enzymatic reaction behaving like a poison, as occurs with the natural TopI inhibitor, camptothecin. Furthermore, the cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549), human ovarian carcinoma (SKOV3), and on non-cancerous lung fibroblasts cell line (MRC5) was also screened.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Naphthyridines/pharmacology , Quinolines/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Density Functional Theory , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Naphthyridines/chemical synthesis , Naphthyridines/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
12.
Bioorg Chem ; 115: 105174, 2021 10.
Article in English | MEDLINE | ID: mdl-34314913

ABSTRACT

Novel non-camptothecin (non-CPT) class of conformationally constrained, hitherto unknown 7,12-dihydrodibenzo[b,h][1,6] naphthyridine and 7H-Chromeno[3,2-c] quinoline derivatives have been designed, synthesized and evaluated for anti-cancer activity. In vitro anti-proliferation evaluation against human cancer cell lines (A549 and MCF-7) exhibited significant cytotoxicity. Among the derivatives (8-24), 8 (IC50 0.44 µM and IC50 0.62 µM) and 12 (IC50 0.69 µM and IC50 0.54 µM) were identified as the most promising candidate against A-549 and MCF-7 cancer cell lines respectively. Topo I inhibitory activity of 8 and 12 suggested that, they may be developed as potential anti-cancer molecules in future and rationalized by docking analysis with effective binding modes. Further, in silico ADME prediction studies of all derivatives were found promising, signifying the drug like properties. In precise, the present investigation displays a new strategy to synthesize and emphasis on anticancer activities of conformationally constrained dibenzo[b,h][1,6] naphthyridine derivatives and Chromeno[3,2-c] quinoline derivatives in the context of cancer drug development and refinement.


Subject(s)
Naphthyridines/chemistry , Naphthyridines/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Molecular Docking Simulation , Naphthyridines/chemical synthesis , Quinolines/chemical synthesis , Topoisomerase I Inhibitors/chemical synthesis
13.
Bioorg Chem ; 112: 104915, 2021 07.
Article in English | MEDLINE | ID: mdl-33905973

ABSTRACT

A series of new benzo[b]thiophenes 2a-f and benzo[4,5]thieno[3,2-b]pyran derivatives 3a-f and 4a-f were synthesized and their structures were confirmed by elemental analyses and spectral data. All synthesized compounds were evaluated by the National Cancer Institute (NCI, USA) against 60 human tumor cell lines. Compounds 3a-f and 4a-f showed potent cytotoxic effects in one dose assay with mean growth inhibition ranging from 62% to 80%. Six compounds 3a, 3d, 3e, 3f, 4d and 4e were selected by NCI, USA for five dose evaluation against 60 human tumor cell lines. Compounds 3a, 3d, 3e and 3f exhibited very potent and broad spectrum cytotoxicity against almost all cancer cell lines with mean concentration that yield 50% growth inhibition (MG-MID GI50) of 0.1-0.58 µM and mean concentration that produce 100% growth inhibition (MG-MID TGI) of 6.03-10.00 µM. Compounds 4d and 4e exhibited very potent and selective cytotoxic activity against MDA-MB-435 subpanel (melanoma cancer) with GI50 of 0.45 µM and 0.59 µM, respectively. The mechanism of antiproliferative activity was determined for the most active compounds 3a, 3d, 3e, 3f, 4d, and 4evia measuring their half maximal inhibitory concentration (IC50) against topoisomerase I enzyme at different concentrations. Compounds 3a and 3e exhibited excellent activity compared with reference drugs with IC50 of 0.295 µM and 0.219 µM, respectively. Plasmid DNA nicking assay verified that these compounds are topoisomerase I poisons not suppressors. The active compound 3e induced a significant disruption in the cell cycle profile parallel to its effect on apoptosis induction.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Pyrans/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Pyrans/chemical synthesis , Pyrans/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
14.
Bioorg Chem ; 110: 104698, 2021 05.
Article in English | MEDLINE | ID: mdl-33676043

ABSTRACT

We report herein design and synthesis of a new series of 3,7-bis-benzylidenes of ciprofloxacin. Most of the target compounds revealed good cytotoxic activity; the most potent 4e and 4i achieved strong broad spectrum antiproliferative activity with comparable activity to Doxorubicin with IC50 (µM) of 1.21 ± 0.02, 0.87 ± 0.04, 1.21 ± 0.02; 0.41 ± 0.02, 0.57 ± 0.06, 1.31 ± 0.04 and 1.26 ± 0.01, 1.79 ± 0.04, 0.63 ± 0.01 against leukemia cancer cell line HL-60 (TB), colon cancer cell line HCT-116 and breast cancer cell line MCF7, respectively. Moreover, the most potent derivative 4i induced apoptosis at G2/M phase Investigating the mechanism of action of compounds 4e, 4 h and 4i exhibited promising dual TOP Iα and TOP IIB % inhibition comparable to Camptothecin and Etoposide; respectively. Docking of 4e, 4 h and 4i into the active site of topo I and II proteins compared to Camptothein and Etoposide revealed acceptable binding score and augmented enzyme assay data. Hence, 4e and 4i are promising targeted antiproliferative dual acting TOP Iα TOP IIB inhibitors that require further optimization.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Ciprofloxacin/analogs & derivatives , Ciprofloxacin/chemical synthesis , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Drug Design , Humans , Models, Molecular , Molecular Structure , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Conformation , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/pharmacology
15.
Biosci Biotechnol Biochem ; 85(1): 181-191, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33577663

ABSTRACT

Benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs) are potent anticancer compounds having unique BBPIs ring system designed on the basis of the marine natural product lamellarin D. In this study, we describe an alternative synthesis of a 2-demethoxy series of BBPIs, employing van Leusen pyrrole synthesis and an intramolecular Heck reaction as the key reactions. Cytotoxicity of the derivatives against several cancer and normal cell lines is reported.


Subject(s)
Alkaloids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Benzopyrans/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Humans , Topoisomerase I Inhibitors/chemistry
16.
Bioorg Med Chem Lett ; 30(4): 126925, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31901379

ABSTRACT

A series of novel indole-pyrazoline hybrid derivatives were designed, synthesized, and evaluated for topoisomerase 1 (Top1) inhibitory activity. Top1-mediated relaxation assays showed that our synthesized compounds had variable Top1 inhibitory activity. Among these compounds, 3-(5-(naphthalen-1-yl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl)-1-(phenylsulfonyl)-1H-indole (6n) was found to be a strong Top1 inhibitor with better inhibitory activity than CPT and hit compounds. Our further experiments rationalized the mode of action for this new type of inhibitors, which showed no significant binding to supercoiled DNA.


Subject(s)
DNA Topoisomerases, Type I/chemistry , Indoles/chemistry , Pyrazoles/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Binding Sites , DNA Topoisomerases, Type I/metabolism , DNA, Superhelical/chemistry , DNA, Superhelical/metabolism , Drug Design , Humans , Molecular Dynamics Simulation , Structure-Activity Relationship , Topoisomerase I Inhibitors/metabolism
17.
Inorg Chem ; 59(5): 3304-3311, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32064865

ABSTRACT

The water-compatible optically pure metallohelices made by self-assembly of simple nonpeptidic organic components around Fe(II) ions are now recognized as a distinct subclass of helicates that exhibit similar architecture to some natural cationic antimicrobial peptides. Notably, a new series of metallohelices was recently shown to exhibit biological activity, displaying high, structure-dependent activity against bacteria. It is also important that, thanks to their properties, such metallohelices can exhibit specific interactions with biomacromolecules. Here, following our prior report on the metallohelices that have high, structure-dependent activity against bacteria, we investigated the interactions of the series of iron(II) metallohelices with DNA, which is a potential pharmacological target of this class of coordination compounds. The results obtained with the aid of biophysical and molecular biology methods show that the investigated metallohelices accumulate in eukaryotic cells and that a significant fraction of the metallohelices accumulates in the cell nucleus, allowing them to interact also with nuclear DNA. Additionally, we have demonstrated that some metallohelices have a high affinity to DNA and are able to condense/aggregate DNA molecules more efficiently than conventional DNA-condensing agents, such as polyamines. Moreover, this capability of the metallohelices correlates with their efficiency to inhibit DNA-related enzymatic activities, such as those connected with DNA transcription, catalysis of DNA relaxation by DNA topoisomerase I, and cleavage by restriction enzymes.


Subject(s)
Cell Nucleus/chemistry , DNA Topoisomerases, Type I/metabolism , DNA/antagonists & inhibitors , Ferrous Compounds/pharmacology , Topoisomerase I Inhibitors/pharmacology , Cell Nucleus/metabolism , DNA/genetics , DNA/metabolism , Ferrous Compounds/chemical synthesis , Ferrous Compounds/chemistry , HCT116 Cells , Humans , Molecular Structure , Optical Phenomena , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
18.
Inorg Chem ; 59(20): 15004-15018, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32997499

ABSTRACT

In this paper, a series of new ruthenium complexes of the general formula [Ru(NS)(dpphpy)(dppb)]PF6 (Ru1-Ru3), where dpphpy = diphenyl-2-pyridylphosphine, NS ligands = 2-thiazoline-2-thiol (tzdt, Ru1), 2-mercaptopyrimidine (pySm, Ru2), and 4,6-diamino-2-mercaptopyrimidine (damp, Ru3), and dppb = 1,4-bis(diphenylphosphino)butane, were synthesized and characterized by elemental analysis, spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), and X-ray diffraction. In the characterization, the correlation between the phosphorus atoms and their respective aromatic hydrogen atoms of the compounds in the assignment stands outs, by 1H-31P HMBC experiments. The compounds show anticancer activities against A549 (lung) and MDA-MB-231 (breast) cancer cell lines, higher than the clinical drug cisplatin. All of the complexes are more cytotoxic against the cancer cell lines than against the MRC-5 (lung) and MCF-10A (breast) nontumorigenic human cell lines. For A549 tumor cells, cell cycle analysis upon treatment with Ru2 showed that it inhibits the mitotic phase because arrest was observed in the Sub-G1 phase. Additionally, the compound induces cell death by an apoptotic pathway in a dose-dependent manner, according to annexin V-PE assay. The multitargeted character of the compounds was investigated, and the biomolecules were DNA, topoisomerase IB, and proteasome, as well as the fundamental biomolecule in the pharmacokinetics of drugs, human serum albumin. The experimental results indicate that the complexes do not target DNA in the cells. At low concentrations, the compounds showed the ability to partially inhibit the catalytic activity of topoisomerase IB in the process of relaxation of the DNA plasmid. Among the complexes assayed in cultured cells, complex Ru3 was able to diminish the proteasomal chymotrypsin-like activity to a greater extent.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Proteasome Inhibitors/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Phosphines/chemical synthesis , Phosphines/pharmacology , Proteasome Inhibitors/chemical synthesis , Ruthenium/chemistry , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/pharmacology , Topoisomerase I Inhibitors/chemical synthesis
19.
Bioorg Chem ; 104: 104303, 2020 11.
Article in English | MEDLINE | ID: mdl-33011528

ABSTRACT

A stereoselective method was developed for the synthesis of synthetic analogues of natural 5Z,9Z-dienoic acids by esterification of aliphatic and aromatic alcohols and carboxylic acids with (5Z,9Z)-1,14-tetradeca-5,9-dienedioic acid and (5Z,9Z)-1,14-tetradeca-5,9-dienediol, synthesized by Ti-catalyzed homo-cyclomagnesiation of the tetrahydropyran ether of hepta-5,6-dien-1-ol with Grignard reagents. In order to establish the effect of molecular structure on the antitumor activity, the obtained 5Z,9Z-dienoic acids were tested for the inhibitory activity against human topoisomerase I, the cytotoxic activity in vitro against several cancer and normal cell lines (Jurkat, HL-60, K562, U937, fibroblasts), the effect on the cell cycle, and apoptosis-inducing ability using flow cytofluorometry. In addition, the effect of the synthesized acids on the cancer cell production of some phosphorylated and unphosphorylated proteins responsible for proliferation and apoptosis was studied by a new multiplex assay technology, MAGPIX.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , DNA Topoisomerases, Type I/metabolism , Fatty Acids, Unsaturated/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fatty Acids, Unsaturated/chemical synthesis , Fatty Acids, Unsaturated/chemistry , Humans , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
20.
Bioorg Chem ; 94: 103427, 2020 01.
Article in English | MEDLINE | ID: mdl-31735357

ABSTRACT

New tailored copper(II)-based intercalating complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized from Schiff base scaffold HL1 and HL2(E)-4-(2-((2-hydroxy-3-methoxybenzylidene)amino)ethyl)benzenesulfonamide and (E)-4-(2-((2-hydroxybenzylidene)amino)ethyl)benzenesulfonamide, respectively. The structure elucidation of complexes 1 and 2 was carried out by employing various spectroscopic techniques viz., FT-IR, UV-vis, ESI-MS, EPR and single X-ray crystal diffraction studies. The complexes 1 and 2 were crystallized in monoclinic P21/n and triclinic P-1 space group, respectively possessing square planar geometry around Cu(II) coordinated with N,O-donor Schiff base ligands. An analysis of Hirshfeld surfaces of complexes 1 and 2 were performed to ascertain different intra and intermolecular non-covalent interactions (H-bonding, CH⋯ πetc.) responsible for the stabilization of crystal lattices. Calculations based on Density functional theory (B3LYP/DFT), have been carried out to obtain energies of Frontier molecular orbitals. Comparative in vitro binding profile of complexes 1 and 2 with ct-DNA was evaluated employing various biophysical techniques viz., UV-vis, fluorescence, circular dichroism and cyclic voltammetry which suggested non-covalent intercalative binding mode with more avid binding propensity of complex 1 compared to complex 2. The cleavage experiments of complex 1 was performed by gel electrophoretic assay which revealed efficient cleavage mediated via oxidative pathway. Furthermore, topoisomerase I enzymatic activity of complex 1 was carried out employing gel electrophoretic assay which demonstrated significant inhibitory effects at a low concentration of 25 µM. The cytotoxic potential of complex 1 was analyzed by SRB assay on a panel of selected human cancer cell lines which revealed selective activity for MCF-7 (breast cancer) cell line with GI50 = 16.21 µg/ml.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , DNA/drug effects , Density Functional Theory , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Copper/pharmacology , DNA Cleavage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Benzenesulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL