Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.413
Filter
Add more filters

Publication year range
1.
Cell ; 181(6): 1410-1422.e27, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32413320

ABSTRACT

Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Coupling of cell ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC activity without cell sorting.


Subject(s)
CRISPR-Cas Systems/genetics , Cell Lineage/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Transcriptome/genetics , Animals , Cell Line , Female , Flow Cytometry/methods , Hematopoietic Stem Cells/physiology , Male , Mice , Transduction, Genetic/methods
2.
Mol Cell ; 66(5): 721-728.e3, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552617

ABSTRACT

A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability.


Subject(s)
Bacteriophage T7/genetics , DNA, Bacterial/genetics , DNA, Viral/genetics , Escherichia coli/genetics , Genetic Vectors , Klebsiella pneumoniae/genetics , Shigella sonnei/genetics , Transduction, Genetic/methods , Virion , DNA, Bacterial/biosynthesis , DNA, Viral/biosynthesis , Escherichia coli/metabolism , Escherichia coli/virology , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Viral , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/virology , Shigella sonnei/metabolism , Shigella sonnei/virology
3.
Gene Ther ; 31(5-6): 285-294, 2024 05.
Article in English | MEDLINE | ID: mdl-38374348

ABSTRACT

Manufacturing of recombinant adeno-associated virus (AAV) vectors produces three types of capsids: full, intermediate, and empty. While there are different opinions about the impact of intermediate and empty capsids on safety and efficacy of AAV products, they are generally considered impurities because they are not the intended fully intact vector product. The presence of these impurities could impact product efficacy due to potential competition with fully packaged AAVs for cellular transduction, as well as have potential implications to patient safety due to increased capsid load during dosing. To determine the impact of intermediate capsids on potency, an AAV preparation was separated into fractions enriched for full, intermediate, or empty capsids. Using a matrix of in vitro (infectivity, gene expression, biological activity) and in vivo potency assays to determine potency as a function of capsid content, our results indicate that while intermediate capsids contribute to the vector genome titer of the product and are equally as infectious as full capsids, they do not contribute to the potency of the AAV product. This study confirms the criticality of reducing and controlling the level of intermediate capsids to ensure a more efficacious AAV product.


Subject(s)
Capsid , Dependovirus , Genetic Vectors , Dependovirus/genetics , Capsid/metabolism , Genetic Vectors/genetics , Humans , Animals , Mice , Transduction, Genetic/methods , HEK293 Cells , Genetic Therapy/methods
4.
Cytotherapy ; 26(6): 586-591, 2024 06.
Article in English | MEDLINE | ID: mdl-38551525

ABSTRACT

BACKGROUND AIMS: Gene therapy using lentiviral vectors (LVs) that harbor a functional ß-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells. In the present study, we describe a digital droplet PCR (ddPCR) technique to measure the lentiviral VCN in transduced hematopoietic stem and progenitor cells (HSPCs). METHODS: After HSPCs were transduced with an LV encoding the therapeutic ß-globin (ßA-T87Q) gene, the integrated lentiviral sequence in the host genome was amplified with primers that targeted a sequence within the vector and the human RPP30 gene. The dynamic range of ddPCR was between 5 × 10-3 ng and 5 × 10-6 ng of target copy per reaction. RESULTS: We found that the ddPCR-based approach was able to estimate VCN with high sensitivity and a low standard deviation. Furthermore, ddPCR-mediated quantitation of lentiviral copy numbers in differentiated erythroblasts correlated with the level of ßA-T87Q protein detected by reverse-phase high-performance liquid chromatography. CONCLUSIONS: Taken together, the ddPCR technique has the potential to precisely detect LV copy numbers in the host genome, which can be used for VCN estimation, calculation of infectious titer and multiplicity of infection for HSPC transduction in a clinical setting.


Subject(s)
Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cells , Lentivirus , Transduction, Genetic , beta-Globins , Humans , Lentivirus/genetics , Hematopoietic Stem Cells/metabolism , Genetic Vectors/genetics , beta-Globins/genetics , Transduction, Genetic/methods , Genetic Therapy/methods , beta-Thalassemia/therapy , beta-Thalassemia/genetics , Polymerase Chain Reaction/methods , Gene Dosage/genetics
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504014

ABSTRACT

Many tailed bacteriophages assemble ejection proteins and a portal-tail complex at a unique vertex of the capsid. The ejection proteins form a transenvelope channel extending the portal-tail channel for the delivery of genomic DNA in cell infection. Here, we report the structure of the mature bacteriophage T7, including the ejection proteins, as well as the structures of the full and empty T7 particles in complex with their cell receptor lipopolysaccharide. Our near-atomic-resolution reconstruction shows that the ejection proteins in the mature T7 assemble into a core, which comprises a fourfold gene product 16 (gp16) ring, an eightfold gp15 ring, and a putative eightfold gp14 ring. The gp15 and gp16 are mainly composed of helix bundles, and gp16 harbors a lytic transglycosylase domain for degrading the bacterial peptidoglycan layer. When interacting with the lipopolysaccharide, the T7 tail nozzle opens. Six copies of gp14 anchor to the tail nozzle, extending the nozzle across the lipopolysaccharide lipid bilayer. The structures of gp15 and gp16 in the mature T7 suggest that they should undergo remarkable conformational changes to form the transenvelope channel. Hydrophobic α-helices were observed in gp16 but not in gp15, suggesting that gp15 forms the channel in the hydrophilic periplasm and gp16 forms the channel in the cytoplasmic membrane.


Subject(s)
Bacteriophage T7/metabolism , Bacteriophage T7/ultrastructure , Bacteriophage T7/genetics , Capsid/metabolism , Capsid Proteins/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy/methods , DNA, Viral/genetics , Lipid Bilayers/metabolism , Models, Molecular , Periplasm/metabolism , Structure-Activity Relationship , Transduction, Genetic/methods , Viral Proteins/metabolism
6.
Immunity ; 41(2): 325-38, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25148027

ABSTRACT

Classical genetic approaches to examine the requirements of genes for T cell differentiation during infection are time consuming. Here we developed a pooled approach to screen 30-100+ genes individually in separate antigen-specific T cells during infection using short hairpin RNAs in a microRNA context (shRNAmir). Independent screens using T cell receptor (TCR)-transgenic CD4(+) and CD8(+) T cells responding to lymphocytic choriomeningitis virus (LCMV) identified multiple genes that regulated development of follicular helper (Tfh) and T helper 1 (Th1) cells, and short-lived effector and memory precursor cytotoxic T lymphocytes (CTLs). Both screens revealed roles for the positive transcription elongation factor (P-TEFb) component Cyclin T1 (Ccnt1). Inhibiting expression of Cyclin T1, or its catalytic partner Cdk9, impaired development of Th1 cells and protective short-lived effector CTL and enhanced Tfh cell and memory precursor CTL formation in vivo. This pooled shRNA screening approach should have utility in numerous immunological studies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Lymphocytic choriomeningitis virus/immunology , RNA Interference/immunology , Animals , Cell Differentiation/genetics , Cyclin T/biosynthesis , Cyclin T/genetics , Cyclin-Dependent Kinase 9/biosynthesis , Cyclin-Dependent Kinase 9/genetics , Immunologic Memory/immunology , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/immunology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Positive Regulatory Domain I-Binding Factor 1 , RNA, Small Interfering , Receptors, Antigen, T-Cell/genetics , T-Box Domain Proteins/genetics , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Transcription Factors/genetics , Transduction, Genetic/methods
7.
J Virol ; 95(20): e0116421, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34346767

ABSTRACT

One approach to improve the utility of adeno-associated virus (AAV)-based gene therapy is to engineer the AAV capsid to (i) overcome poor transport through tissue barriers and (ii) redirect the broadly tropic AAV to disease-relevant cell types. Peptide- or protein-domain insertions into AAV surface loops can achieve both engineering goals by introducing a new interaction surface on the AAV capsid. However, we understand little about the impact of insertions on capsid structure and the extent to which engineered inserts depend on a specific capsid context to function. Here, we examine insert-capsid interactions for the engineered variant AAV9-PHP.B. The 7-amino-acid peptide insert in AAV9-PHP.B facilitates transport across the murine blood-brain barrier via binding to the receptor Ly6a. When transferred to AAV1, the engineered peptide does not bind Ly6a. Comparative structural analysis of AAV1-PHP.B and AAV9-PHP.B revealed that the inserted 7-amino-acid loop is highly flexible and has remarkably little impact on the surrounding capsid conformation. Our work demonstrates that Ly6a binding requires interactions with both the PHP.B peptide and specific residues from the AAV9 HVR VIII region. An AAV1-based vector that incorporates a larger region of AAV9-PHP.B-including the 7-amino-acid loop and adjacent HVR VIII amino acids-can bind to Ly6a and localize to brain tissue. However, unlike AAV9-PHP.B, this AAV1-based vector does not penetrate the blood-brain barrier. Here we discuss the implications for AAV capsid engineering and the transfer of engineered activities between serotypes. IMPORTANCE Targeting AAV vectors to specific cellular receptors is a promising strategy for enhancing expression in target cells or tissues while reducing off-target transgene expression. The AAV9-PHP.B/Ly6a interaction provides a model system with a robust biological readout that can be interrogated to better understand the biology of AAV vectors' interactions with target receptors. In this work, we analyzed the sequence and structural features required to successfully transfer the Ly6a receptor-binding epitope from AAV9-PHP.B to another capsid of clinical interest, AAV1. We found that AAV1- and AAV9-based vectors targeted to the same receptor exhibited different brain-transduction profiles. Our work suggests that, in addition to attachment-receptor binding, the capsid context in which this binding occurs is important for a vector's performance.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/genetics , Protein Binding/genetics , Amino Acids/genetics , Animals , Antigens, Ly/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Dependovirus/genetics , Dependovirus/metabolism , Gene Transfer Techniques , Genetic Engineering/methods , HEK293 Cells , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Peptides/genetics , Protein Domains/genetics , Transduction, Genetic/methods , Transgenes/genetics
8.
Hepatology ; 74(5): 2380-2394, 2021 11.
Article in English | MEDLINE | ID: mdl-34110660

ABSTRACT

BACKGROUND AND AIMS: Hepatitis C virus (HCV) leads to a high rate of chronic infection and T cell dysfunction. Although it is well known that chronic antigenic stimulation is a driving force for impaired T cell functions, the precise mechanisms underlying immune activation-induced T cell dysfunctions during HCV infection remain elusive. APPROACH AND RESULTS: Here, we demonstrated that circulating CD4+ T cells from patients who are chronically HCV-infected exhibit an immune activation status, as evidenced by the overexpression of cell activation markers human leukocyte antigen-antigen D-related, glucose transporter 1, granzyme B, and the short-lived effector marker CD127- killer cell lectin-like receptor G1+ . In contrast, the expression of stem cell-like transcription factor T cell factor 1 and telomeric repeat-binding factor 2 (TRF2) are significantly reduced in CD4+ T cells from patients who are chronically HCV-infected compared with healthy participants (HP). Mechanistic studies revealed that CD4+ T cells from participants with HCV exhibit phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling hyperactivation on T cell receptor stimulation, promoting proinflammatory effector cell differentiation, telomeric DNA damage, and cellular apoptosis. Inhibition of Akt signaling during T cell activation preserved the precursor memory cell population and prevented inflammatory effector cell expansion, DNA damage, and apoptotic death. Moreover, knockdown of TRF2 reduced HP T cell stemness and triggered telomeric DNA damage and cellular apoptosis, whereas overexpression of TRF2 in CD4 T cells prevented telomeric DNA damage. CONCLUSIONS: These results suggest that modulation of immune activation through inhibiting Akt signaling and protecting telomeres through enhancing TRF2 expression may open therapeutic strategies to fine tune the adaptive immune responses in the setting of persistent immune activation and inflammation during chronic HCV infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , DNA Damage/immunology , Hepacivirus/genetics , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/immunology , Telomere/genetics , Adult , Aged , Apoptosis/genetics , Apoptosis/immunology , Cells, Cultured , DNA Damage/genetics , Female , Gene Knockdown Techniques/methods , Hepatitis C, Chronic/virology , Humans , Lymphocyte Activation , Male , Middle Aged , Persistent Infection/genetics , Persistent Infection/immunology , Persistent Infection/virology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Viral/genetics , Signal Transduction/genetics , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism , Transduction, Genetic/methods , Young Adult
9.
Nucleic Acids Res ; 48(14): 8178-8187, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32619241

ABSTRACT

The application of gene-editing technology is currently limited by the lack of safe and efficient methods to deliver RNA-guided endonucleases to target cells. We engineered lentivirus-based nanoparticles to co-package the U6-sgRNA template and the CRISPR-associated protein 9 (Cas9) fused with a virion-targeted protein Vpr (Vpr.Prot.Cas9), for simultaneous delivery to cells. Equal spatiotemporal control of the vpr.prot.cas9 and gag/pol gene expression (the presence of Rev responsive element, RRE) greatly enhanced the encapsidation of the fusion protein and resulted in the production of highly efficient lentivector nanoparticles. Transduction of the unconcentrated, Vpr.Prot.Cas9-containing vectors led to >98% disruption of the EGFP gene in reporter HEK293-EGFP cells with minimal cytotoxicity. Furthermore, we detected indels in the targeted endogenous loci at frequencies of up to 100% in cell lines derived from lymphocytes and monocytes and up to 15% in primary CD4+ T cells by high-throughput sequencing. This approach may provide a platform for the efficient, dose-controlled and tissue-specific delivery of genome editing enzymes to cells and it may be suitable for simultaneous endogenous gene disruption and a transgene delivery.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Gene Editing/methods , Response Elements , CRISPR-Associated Protein 9/genetics , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Lentivirus/genetics , Nanoparticles/chemistry , THP-1 Cells , Transduction, Genetic/methods
10.
Proc Natl Acad Sci U S A ; 116(12): 5785-5794, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30833387

ABSTRACT

Adeno-associated viral vectors (AAVs) have become popular for gene therapy, given their many advantages, including their reduced inflammatory profile compared with that of other viruses. However, even in areas of immune privilege such as the eye, AAV vectors are capable of eliciting host-cell responses. To investigate the effects of such responses on several ocular cell types, we tested multiple AAV genome structures and capsid types using subretinal injections in mice. Assays of morphology, inflammation, and physiology were performed. Pathological effects on photoreceptors and the retinal pigment epithelium (RPE) were observed. Müller glia and microglia were activated, and the proinflammatory cytokines TNF-α and IL-1ß were up-regulated. There was a strong correlation between cis-regulatory sequences and toxicity. AAVs with any one of three broadly active promoters, or an RPE-specific promoter, were toxic, while AAVs with four different photoreceptor-specific promoters were not toxic at the highest doses tested. There was little correlation between toxicity and transgene, capsid type, preparation method, or cellular contaminants within a preparation. The toxic effect was dose-dependent, with the RPE being more sensitive than photoreceptors. Our results suggest that ocular AAV toxicity is associated with certain AAV cis-regulatory sequences and/or their activity and that retinal damage occurs due to responses by the RPE and/or microglia. By applying multiple, sensitive assays of toxicity, AAV vectors can be designed so that they can be used safely at high dose, potentially providing greater therapeutic efficacy.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Transduction, Genetic/methods , Animals , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Vectors , Mice , Mice, Inbred C57BL , Photoreceptor Cells/metabolism , Promoter Regions, Genetic/genetics , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Transgenes , Vision, Ocular/genetics , Vision, Ocular/physiology
11.
Proc Natl Acad Sci U S A ; 116(29): 14755-14760, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31262807

ABSTRACT

Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the loss of upper and lower motor neurons. Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate misfolded SOD1 onto the cytoplasmic faces of intracellular organelles, including mitochondria and endoplasmic reticulum (ER). Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit mutant SOD1 misfolding and binding to intracellular membranes. In addition, complete elimination of endogenous MIF accelerated disease onset and late disease progression, as well as shortened the lifespan of mutant SOD1 mice with higher amounts of misfolded SOD1 detected within the spinal cord. Based on these findings, we used adeno-associated viral (AAV) vectors to overexpress MIF in the spinal cord of mutant SOD1G93A and loxSOD1G37R mice. Our data show that MIF mRNA and protein levels were increased in the spinal cords of AAV2/9-MIF-injected mice. Furthermore, mutant SOD1G93A and loxSOD1G37R mice injected with AAV2/9-MIF demonstrated a significant delay in disease onset and prolonged survival compared with their AAV2/9-GFP-injected or noninjected littermates. Moreover, these mice accumulated reduced amounts of misfolded SOD1 in their spinal cords, with no observed effect on glial overactivation as a result of MIF up-regulation. Our findings indicate that MIF plays a significant role in SOD1 folding and misfolding mechanisms and strengthen the hypothesis that MIF acts as a chaperone for misfolded SOD1 in vivo and may have further implications regarding the therapeutic potential role of up-regulation of MIF in modulating the specific accumulation of misfolded SOD1.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Genetic Therapy/methods , Intramolecular Oxidoreductases/genetics , Macrophage Migration-Inhibitory Factors/genetics , Spinal Cord/pathology , Superoxide Dismutase-1/metabolism , Age of Onset , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/mortality , Animals , Cells, Cultured , Dependovirus , Disease Models, Animal , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Injections, Spinal , Mice , Mice, Transgenic , Motor Neurons/pathology , Mutation , Parvovirinae/genetics , Primary Cell Culture , Protein Aggregates , Protein Folding , Spinal Cord/cytology , Superoxide Dismutase-1/genetics , Time Factors , Transduction, Genetic/methods , Treatment Outcome
12.
Proc Natl Acad Sci U S A ; 116(37): 18571-18577, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31375630

ABSTRACT

Bacteriophage (phage) have attractive advantages as delivery systems compared with mammalian viruses, but have been considered poor vectors because they lack evolved strategies to confront and overcome mammalian cell barriers to infective agents. We reasoned that improved efficacy of delivery might be achieved through structural modification of the viral capsid to avoid pre- and postinternalization barriers to mammalian cell transduction. We generated multifunctional hybrid adeno-associated virus/phage (AAVP) particles to enable simultaneous display of targeting ligands on the phage's minor pIII proteins and also degradation-resistance motifs on the very numerous pVIII coat proteins. This genetic strategy of directed evolution bestows a next-generation of AAVP particles that feature resistance to fibrinogen adsorption or neutralizing antibodies and ability to escape endolysosomal degradation. This results in superior gene transfer efficacy in vitro and also in preclinical mouse models of rodent and human solid tumors. Thus, the unique functions of our next-generation AAVP particles enable improved targeted gene delivery to tumor cells.


Subject(s)
Bacteriophage M13/genetics , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Neoplasms/therapy , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bacteriophage M13/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Cell Line, Tumor , Dependovirus/immunology , Endosomes/immunology , Endosomes/virology , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Humans , Lysosomes/immunology , Lysosomes/virology , Mice , Neoplasms/genetics , Oligopeptides/genetics , Oligopeptides/immunology , Proof of Concept Study , Rats , Transduction, Genetic/methods , Virus Internalization , Xenograft Model Antitumor Assays
13.
J Cell Physiol ; 236(1): 354-365, 2021 01.
Article in English | MEDLINE | ID: mdl-32510630

ABSTRACT

Our previous studies have demonstrated that platelet-targeted factor IX (FIX) gene therapy can introduce sustained platelet-FIX expression in hemophilia B (FIXnull ) mice. In this study, we aimed to enhance platelet-FIX expression in FIXnull mice with O6 -methylguanine-DNA-methyltransferase (MGMT)-mediated in vivo drug selection of transduced cells under nonmyeloablative preconditioning. We constructed a novel lentiviral vector (2bF9/MGMT lentivirus vector), which harbors dual genes, the FIX gene driven by the αIIb promoter (2bF9) and the MGMT P140K gene under the murine stem cell virus promoter. Platelet-FIX expression in FIXnull mice was introduced by 2bF9/MGMT-mediated hematopoietic stem cell transduction and transplantation. The 2bF9/MGMT-transduced cells were effectively enriched after drug selection by O6 -benzylguanine/1,3-bis-2-chloroethyl-1-nitrosourea. There were a 2.9-fold higher FIX antigen and a 3.7-fold higher FIX activity in platelets, respectively, posttreatment compared with pretreatment. When a 6-hr tail bleeding test was used to grade the bleeding phenotype, the clotting time in treated animals was 2.6 ± 0.5 hr. In contrast, none of the FIXnull control mice were able to clot within 6 hr. Notably, none of the recipients developed anti-FIX antibodies after gene therapy. One of four recipients developed a low titer of inhibitors when challenged with rhF9 together with adjuvant. In contrast, all FIXnull controls developed inhibitors after the same challenge. Anti-FIX immunoglobulin G were barely detectable in recipients (1.08 ± 0.54 µg/ml), an 875-fold lower level than in the FIXnull controls. Our data demonstrate that using the MGMT-mediated drug selection system in 2bF9 gene therapy can significantly enhance therapeutic platelet-FIX expression, resulting in sustained phenotypic correction and immune tolerance in FIXnull mice.


Subject(s)
Blood Platelets/physiology , Hemophilia B/genetics , Animals , Female , Genetic Therapy/methods , Genetic Vectors/genetics , Hematopoietic Stem Cells/physiology , Immune Tolerance/genetics , Lentivirus/genetics , Male , Mice , Mice, Inbred C57BL , O(6)-Methylguanine-DNA Methyltransferase/genetics , Phenotype , Promoter Regions, Genetic/genetics , Transduction, Genetic/methods
14.
Pflugers Arch ; 473(3): 533-546, 2021 03.
Article in English | MEDLINE | ID: mdl-33580817

ABSTRACT

The cation channel transient receptor potential melastatin 4 (TRPM4) is a calcium-activated non-selective cation channel and acts in cardiomyocytes as a negative modulator of the L-type Ca2+ influx. Global deletion of TRPM4 in the mouse led to increased cardiac contractility under ß-adrenergic stimulation. Consequently, cardiomyocyte-specific inactivation of the TRPM4 function appears to be a promising strategy to improve cardiac contractility in heart failure patients. The aim of this study was to develop a gene therapy approach in mice that specifically silences the expression of TRPM4 in cardiomyocytes. First, short hairpin RNAmiR30 (shRNAmiR30) sequences against the TRPM4 mRNA were screened in vitro using lentiviral transduction for a stable expression of the shRNA cassettes. Western blot analysis identified three efficient shRNAmiR30 sequences out of six, which reduced the endogenous TRPM4 protein level by up to 90 ± 6%. Subsequently, the most efficient shRNAmiR30 sequences were delivered into cardiomyocytes of adult mice using adeno-associated virus serotype 9 (AAV9)-mediated gene transfer. Initially, the AAV9 vector particles were administered via the lateral tail vein, which resulted in a downregulation of TRPM4 by 46 ± 2%. Next, various optimization steps were carried out to improve knockdown efficiency in vivo. First, the design of the expression cassette was streamlined for integration in a self-complementary AAV vector backbone for a faster expression. Compared to the application via the lateral tail vein, intravenous application via the retro-orbital sinus has the advantage that the vector solution reaches the heart directly and in a high concentration, and eventually a TRPM4 knockdown efficiency of 90 ± 7% in the heart was accomplished by this approach. By optimization of the shRNAmiR30 constructs and expression cassette as well as the route of AAV9 vector application, a 90% reduction of TRPM4 expression was achieved in the adult mouse heart. In the future, AAV9-RNAi-mediated inactivation of TRPM4 could be a promising strategy to increase cardiac contractility in preclinical animal models of acute and chronic forms of cardiac contractile failure.


Subject(s)
Gene Transfer Techniques , Myocytes, Cardiac/metabolism , TRPM Cation Channels , Animals , Dependovirus , Genetic Vectors , Male , Mice , RNA Interference , RNA, Small Interfering , Transduction, Genetic/methods
15.
Cancer Sci ; 112(11): 4617-4626, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34464480

ABSTRACT

Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to arise from neural crest-derived immature cells. The prognosis of patients with high-risk or recurrent/refractory neuroblastoma remains quite poor despite intensive multimodality therapy; therefore, novel therapeutic interventions are required. We examined the expression of a cell adhesion molecule CD146 (melanoma cell adhesion molecule [MCAM]) by neuroblastoma cell lines and in clinical samples and investigated the anti-tumor effects of CD146-targeting treatment for neuroblastoma cells both in vitro and in vivo. CD146 is expressed by 4 cell lines and by most of primary tumors at any stage. Short hairpin RNA-mediated knockdown of CD146, or treatment with an anti-CD146 polyclonal antibody, effectively inhibited growth of neuroblastoma cells both in vitro and in vivo, principally due to increased apoptosis via the focal adhesion kinase and/or nuclear factor-kappa B signaling pathway. Furthermore, the anti-CD146 polyclonal antibody markedly inhibited tumor growth in immunodeficient mice inoculated with primary neuroblastoma cells. In conclusion, CD146 represents a promising therapeutic target for neuroblastoma.


Subject(s)
Antibodies/therapeutic use , CD146 Antigen/antagonists & inhibitors , Molecular Targeted Therapy/methods , Neuroblastoma/therapy , RNA, Small Interfering/therapeutic use , Animals , Apoptosis , CD146 Antigen/metabolism , Cell Line, Tumor , Cell Survival , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gene Knockdown Techniques , Heterografts , Humans , Mice , NF-kappa B/metabolism , Neoplasm Recurrence, Local , Neoplasm Transplantation , Neuroblastoma/metabolism , Neuroblastoma/pathology , Prognosis , Signal Transduction , Spheroids, Cellular , Transduction, Genetic/methods
16.
Plant Cell Physiol ; 62(11): 1718-1727, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34383076

ABSTRACT

Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying ß-glucuronidase (GUS) genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.


Subject(s)
Agrobacterium tumefaciens/physiology , Marchantia/genetics , Plants, Genetically Modified/genetics , Transduction, Genetic/methods , Transformation, Genetic , Marchantia/microbiology
17.
J Gene Med ; 23(10): e3368, 2021 10.
Article in English | MEDLINE | ID: mdl-34050587

ABSTRACT

BACKGROUND: Pre-existing immunities hamper the application of human adenovirus (HAdV) vectors in gene therapy or vaccine development. Fowl adenovirus (FAdV)-based vector might represent an alternative. METHODS: An intermediate plasmid containing FAdV-4 fiber genes, pMD-FAV4Fs, was separated from FAdV-4 adenoviral plasmid pKFAV4GFP. An overlap extension polymerase chain reaction (PCR) was employed for fiber modification in pMD-FAV4Fs, and the modified fibers were restored to generate new adenoviral plasmids through restriction-assembly. FAdV-4 vectors were rescued and amplified in chicken LMH cells. Fluorescence microscopy and flow cytometry were used to evaluate the gene transfer efficiency. The amount of viruses binding to cells was determined by a real-time PCR. A plaque-forming assay and one-step growth curve were used to evaluate virus growth. RESULTS: Four sites in the CD-, DE-, HI- and IJ-loop of fiber1 knob could tolerate the insertion of exogenous peptide. The insertion of RGD4C peptide in the fiber1 knob significantly promoted FAdV-4 transduction to human adherent cells such as 293, A549 and HEp-2, and the insertion to the IJ-loop demonstrated the best performance. The replacement of the fiber2 knob of FAdV-4 with that of HAdV-35 improved the gene transfer to human suspension cells such as Jurkat, K562 and U937. Fiber-modified FAdV-4 vectors could transduce approximately 80% human cells at an acceptable multiplicity of infection. Enhanced gene transfer mainly resulted from increased virus binding. Fiber modifications did not significantly influence the growth of recombinant FAdV-4 in packaging cells. CONCLUSIONS: As a proof of principle, it was feasible to enhance gene transduction of FAdV-4 vectors to human cells by modifying the fibers.


Subject(s)
Adenoviruses, Human/genetics , Genetic Vectors/genetics , A549 Cells , Cell Line , Cell Line, Tumor , Genetic Therapy/methods , HEK293 Cells , HL-60 Cells , Humans , Jurkat Cells , Plasmids/genetics , Transduction, Genetic/methods , U937 Cells , Vaccine Development/methods
18.
Genes Cells ; 25(12): 811-824, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33064855

ABSTRACT

Mature adipocyte-derived dedifferentiated fat (DFAT) cells have been identified to possess similar multipotency to mesenchymal stem cells, but a method for converting DFAT cells into hepatocytes was previously unknown. Here, using comprehensive analysis of gene expression profiles, we have extracted three transcription factors, namely Foxa2, Hnf4a and Sall1 (FHS), that can convert DFAT cells into hepatocytes. Hepatogenic induction has converted FHS-infected DFAT cells into an epithelial-like morphological state and promoted the expression of hepatocyte-specific features. Furthermore, the DFAT-derived hepatocyte-like (D-Hep) cells catalyzed the detoxification of several compounds. These results indicate that the transduction of DFAT cells with three genes, which were extracted by comprehensive gene expression analysis, efficiently generated D-Hep cells with detoxification abilities similar to those of primary hepatocytes. Thus, D-Hep cells may be useful as a new cell source for surrogate hepatocytes and may be applied to drug discovery studies, such as hepatotoxicity screening and drug metabolism tests.


Subject(s)
Adipose Tissue/cytology , Cell Transdifferentiation , Cellular Reprogramming Techniques/methods , Hepatocytes/cytology , Adipose Tissue/metabolism , Animals , Cells, Cultured , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Transduction, Genetic/methods
19.
Blood ; 134(16): 1298-1311, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31416800

ABSTRACT

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Subject(s)
Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/virology , Membrane Proteins/drug effects , Resveratrol/pharmacology , Transduction, Genetic/methods , Animals , Endosomes/drug effects , Endosomes/metabolism , Genetic Vectors , Heterografts , Humans , Lentivirus , Membrane Proteins/metabolism , Mice , Protein Transport/drug effects
20.
FASEB J ; 34(9): 12379-12391, 2020 09.
Article in English | MEDLINE | ID: mdl-32960474

ABSTRACT

Hematopoietic gene delivery, such as hematopoietic stem/progenitor cells (HSPCs), is a promising treatment for both inherited and acquired diseases, such as hemophilia. Recently, a combined strategy to achieve more than 90% transduction efficiency was documented using recombinant adeno-associated virus serotype 6 (rAAV6) vectors. However, the mechanisms of enhanced vector transduction efficiency in hematopoietic cells are largely unknown. In this manuscript, we first reported that proteasome inhibitors, which are well-known to facilitate rAAV intracellular trafficking in various cell types, are not effective in hematopoietic cells. From the screening of small molecules derived from traditional Chinese medicine, we demonstrated that shikonin, a potential reactive oxygen species (ROS) generator, significantly increased the in vitro and ex vivo transgene expression mediated by rAAV6 vectors in hematopoietic cells, including human cord blood-derived CD34 + HSPCs. Shikonin mainly targeted vector intracellular trafficking, instead of host cell entry or endonuclear single to double strand vector DNA transition, in a vector serotype-dependent manner. Moreover, a ROS scavenger completely prevented the capability of shikonin to enhance rAAV6 vector-mediated transgene expression. Taken together, these studies expand our understanding of rAAV6-mediated transduction in hematopoietic cells and are informative for improving rAAV6-based treatment of blood diseases.


Subject(s)
Hematopoietic Stem Cells/metabolism , Parvovirinae/genetics , Transduction, Genetic/methods , Cells, Cultured , Dependovirus , Genetic Vectors , Humans , Leupeptins/pharmacology , Medicine, Chinese Traditional , Naphthoquinones/pharmacology , Proteasome Endopeptidase Complex/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL