Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.426
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 32: 51-82, 2014.
Article in English | MEDLINE | ID: mdl-24313777

ABSTRACT

The cytokine TGF-ß plays an integral role in regulating immune responses. TGF-ß has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4(+) T cell responses. Many immune and nonimmune cells can produce TGF-ß, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-ß provides a crucial layer of regulation that controls TGF-ß function. In this review, we highlight some of the important functional roles for TGF-ß in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-ß controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process.


Subject(s)
Immunity/physiology , Transforming Growth Factor beta/metabolism , Adaptive Immunity , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immune System/physiology , Integrins/metabolism , Protein Binding , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transforming Growth Factor beta/chemistry
2.
Nat Immunol ; 24(7): 1188-1199, 2023 07.
Article in English | MEDLINE | ID: mdl-37322178

ABSTRACT

Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFß and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFß-SMAD signaling axis.


Subject(s)
Microglia , Transcription Factors , Animals , Mice , Binding Sites , DNA , Mice, Knockout , Microglia/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
3.
Cell ; 181(3): 557-573.e18, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32259484

ABSTRACT

Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ß, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ß.


Subject(s)
Brain/cytology , Macrophages/cytology , Microglia/cytology , Animals , Brain/metabolism , Cell Lineage , Mice , Monocytes , Signal Transduction , Transforming Growth Factor beta/metabolism
4.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866069

ABSTRACT

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Subject(s)
Adult Stem Cells/metabolism , Idiopathic Pulmonary Fibrosis/etiology , Pulmonary Alveoli/metabolism , Adult Stem Cells/pathology , Aged , Alveolar Epithelial Cells/pathology , Animals , Biomechanical Phenomena/physiology , Female , Fibrosis/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Male , Mice , Middle Aged , Pulmonary Alveoli/pathology , Regeneration , Signal Transduction , Stem Cells/pathology , Stress, Mechanical , Stress, Physiological/physiology , Transforming Growth Factor beta/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
5.
Nat Immunol ; 23(8): 1236-1245, 2022 08.
Article in English | MEDLINE | ID: mdl-35882933

ABSTRACT

Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.


Subject(s)
Immunologic Memory , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Transforming Growth Factor beta/metabolism
6.
Nat Immunol ; 23(7): 1121-1131, 2022 07.
Article in English | MEDLINE | ID: mdl-35761084

ABSTRACT

Tissue-resident memory T cells (TRM cells) provide protective immunity, but the contributions of specific tissue environments to TRM cell differentiation and homeostasis are not well understood. In the present study, the diversity of gene expression and genome accessibility by mouse CD8+ TRM cells from distinct organs that responded to viral infection revealed both shared and tissue-specific transcriptional and epigenetic signatures. TRM cells in the intestine and salivary glands expressed transforming growth factor (TGF)-ß-induced genes and were maintained by ongoing TGF-ß signaling, whereas those in the fat, kidney and liver were not. Constructing transcriptional-regulatory networks identified the transcriptional repressor Hic1 as a critical regulator of TRM cell differentiation in the small intestine and showed that Hic1 overexpression enhanced TRM cell differentiation and protection from infection. Provision of a framework for understanding how CD8+ TRM cells adapt to distinct tissue environments, and identification of tissue-specific transcriptional regulators mediating these adaptations, inform strategies to boost protective memory responses at sites most vulnerable to infection.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory , Animals , Cell Differentiation/genetics , Epigenesis, Genetic , Mice , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
7.
Nat Immunol ; 23(12): 1735-1748, 2022 12.
Article in English | MEDLINE | ID: mdl-36456734

ABSTRACT

The non-pathogenic TH17 subset of helper T cells clears fungal infections, whereas pathogenic TH17 cells cause inflammation and tissue damage; however, the mechanisms controlling these distinct responses remain unclear. Here we found that fungi sensing by the C-type lectin dectin-1 in human dendritic cells (DCs) directed the polarization of non-pathogenic TH17 cells. Dectin-1 signaling triggered transient and intermediate expression of interferon (IFN)-ß in DCs, which was mediated by the opposed activities of transcription factors IRF1 and IRF5. IFN-ß-induced signaling led to integrin αvß8 expression directly and to the release of the active form of the cytokine transforming growth factor (TGF)-ß indirectly. Uncontrolled IFN-ß responses as a result of IRF1 deficiency induced high expression of the IFN-stimulated gene BST2 in DCs and restrained TGF-ß activation. Active TGF-ß was required for polarization of non-pathogenic TH17 cells, whereas pathogenic TH17 cells developed in the absence of active TGF-ß. Thus, dectin-1-mediated modulation of type I IFN responses allowed TGF-ß activation and non-pathogenic TH17 cell development during fungal infections in humans.


Subject(s)
Dendritic Cells , Interferon Type I , Mycoses , Humans , Cytokines/metabolism , Dendritic Cells/metabolism , Interferon Type I/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Th17 Cells/metabolism , Transforming Growth Factor beta/metabolism , Mycoses/immunology
8.
Annu Rev Immunol ; 30: 95-114, 2012.
Article in English | MEDLINE | ID: mdl-22149933

ABSTRACT

On the whole, the healthy adaptive immune system is responsive to foreign antigens and tolerant to self. However, many individual lymphocytes have, and even require, substantial self-reactivity for their particular functions in immunity. In this review, we discuss several populations of lymphocytes that are thought to experience agonist stimulation through the T cell receptor during selection: nTreg cells, iNKT cells, nIELs, and nTh17s. We discuss the nature of this self-reactivity, how it compares with conventional T cells, and why it is important for overall immune health. We also outline molecular pathways unique to each lineage and consider possible commonalities to their development and survival.


Subject(s)
Self Tolerance/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Animals , Homeostasis/immunology , Humans , Immunity , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism
9.
Cell ; 177(7): 1827-1841.e12, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31178117

ABSTRACT

The ability to inherit learned information from parents could be evolutionarily beneficial, enabling progeny to better survive dangerous conditions. We discovered that, after C. elegans have learned to avoid the pathogenic bacteria Pseudomonas aeruginosa (PA14), they pass this learned behavior on to their progeny, through either the male or female germline, persisting through the fourth generation. Expression of the TGF-ß ligand DAF-7 in the ASI sensory neurons correlates with and is required for this transgenerational avoidance behavior. Additionally, the Piwi Argonaute homolog PRG-1 and its downstream molecular components are required for transgenerational inheritance of both avoidance behavior and ASI daf-7 expression. Animals whose parents have learned to avoid PA14 display a PA14 avoidance-based survival advantage that is also prg-1 dependent, suggesting an adaptive response. Transgenerational epigenetic inheritance of pathogenic learning may optimize progeny decisions to increase survival in fluctuating environmental conditions.


Subject(s)
Argonaute Proteins , Avoidance Learning , Behavior, Animal , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Epigenesis, Genetic , Transforming Growth Factor beta , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Pseudomonas aeruginosa , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
10.
Cell ; 179(5): 1177-1190.e13, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730856

ABSTRACT

Immune checkpoint therapy (ICT) shows encouraging results in a subset of patients with metastatic castration-resistant prostate cancer (mCRPC) but still elicits a sub-optimal response among those with bone metastases. Analysis of patients' bone marrow samples revealed increased Th17 instead of Th1 subsets after ICT. To further evaluate the different tumor microenvironments, we injected mice with prostate tumor cells either subcutaneously or intraosseously. ICT in the subcutaneous CRPC model significantly increases intra-tumoral Th1 subsets and improves survival. However, ICT fails to elicit an anti-tumor response in the bone CRPC model despite an increase in the intra-tumoral CD4 T cells, which are polarized to Th17 rather than Th1 lineage. Mechanistically, tumors in the bone promote osteoclast-mediated bone resorption that releases TGF-ß, which restrains Th1 lineage development. Blocking TGF-ß along with ICT increases Th1 subsets and promotes clonal expansion of CD8 T cells and subsequent regression of bone CRPC and improves survival.


Subject(s)
Cell Lineage , Immunotherapy , T-Lymphocytes, Helper-Inducer/cytology , Tumor Microenvironment , Animals , Antigens/metabolism , Bone Neoplasms/secondary , CTLA-4 Antigen/metabolism , Cell Lineage/drug effects , Cell Proliferation/drug effects , Clone Cells , Cytokines/metabolism , Disease Models, Animal , Immunologic Memory/drug effects , Ipilimumab/pharmacology , Male , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Programmed Cell Death 1 Receptor/metabolism , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Survival Analysis , T-Lymphocytes, Helper-Inducer/drug effects , Th1 Cells/drug effects , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/drug effects
11.
Cell ; 173(3): 634-648.e12, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29606356

ABSTRACT

Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119+CD45-CD71+ phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor ß (TGF-ß) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications.


Subject(s)
Disease Progression , Erythroblasts/cytology , Nerve Tissue Proteins/blood , Spleen/cytology , Transforming Growth Factor beta/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hep G2 Cells , Humans , Leukocyte Common Antigens/metabolism , Leukocytes/cytology , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/genetics , Signal Transduction
12.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625050

ABSTRACT

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Subject(s)
Databases, Genetic , Neoplasms/pathology , Signal Transduction/genetics , Genes, Neoplasm , Humans , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
13.
Cell ; 174(1): 156-171.e16, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29909984

ABSTRACT

Extracellular proTGF-ß is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-ß is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVß8-dependent TGF-ß activation. Lrrc33-/- mice lack CNS vascular abnormalities associated with deficiency in TGF-ß-activating integrins but have microglia with a reactive phenotype and after 2 months develop ascending paraparesis with loss of myelinated axons and death by 5 months. Whole bone marrow transplantation results in selective repopulation of Lrrc33-/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33-/- microglia in the same brain suggest that there is little spreading of TGF-ß activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-ß provide localized and selective activation of TGF-ß.


Subject(s)
Carrier Proteins/metabolism , Microglia/metabolism , Nervous System/metabolism , Transforming Growth Factor beta/metabolism , Animals , Axons/metabolism , Bone Marrow Transplantation , Brain/metabolism , Carrier Proteins/classification , Carrier Proteins/genetics , Cells, Cultured , Integrins/metabolism , Kaplan-Meier Estimate , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Mutagenesis, Site-Directed , Neurodegenerative Diseases/mortality , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Phylogeny , Protein Binding , Protein Precursors/genetics , Protein Precursors/metabolism , Transforming Growth Factor beta/genetics
14.
Cell ; 173(1): 104-116.e12, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29502971

ABSTRACT

Human diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo lineage tracing revealed that 15%-20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-ß and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that have terminally exited the cell cycle.


Subject(s)
Heart/physiology , Myocytes, Cardiac/metabolism , Animals , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Proliferation , Cyclin B1/genetics , Cyclin B1/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cytokinesis , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/veterinary , Myocytes, Cardiac/cytology , Myosin Heavy Chains/genetics , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Rats , Regeneration , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism
15.
Nat Immunol ; 21(7): 766-776, 2020 07.
Article in English | MEDLINE | ID: mdl-32424367

ABSTRACT

Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-ß8 endows the bioavailability of transforming growth factor-ß in the microenvironment, thereby promoting the generation of CD8+ TRM cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Cell Differentiation/immunology , Immunologic Memory , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/transplantation , Coccidiosis/immunology , Coccidiosis/parasitology , Disease Models, Animal , Eimeria/immunology , Female , Humans , Integrin beta Chains/metabolism , Male , Mice , Mice, Transgenic , Receptors, CXCR3/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation , Transforming Growth Factor beta/metabolism
16.
Nat Immunol ; 20(8): 992-1003, 2019 08.
Article in English | MEDLINE | ID: mdl-31263279

ABSTRACT

Here we identify a group 2 innate lymphoid cell (ILC2) subpopulation that can convert into interleukin-17 (IL-17)-producing NKp44- ILC3-like cells. c-Kit and CCR6 define this ILC2 subpopulation that exhibits ILC3 features, including RORγt, enabling the conversion into IL-17-producing cells in response to IL-1ß and IL-23. We also report a role for transforming growth factor-ß in promoting the conversion of c-Kit- ILC2s into RORγt-expressing cells by inducing the upregulation of IL23R, CCR6 and KIT messenger RNA in these cells. This switch was dependent on RORγt and the downregulation of GATA-3. IL-4 was able to reverse this event, supporting a role for this cytokine in maintaining ILC2 identity. Notably, this plasticity has physiological relevance because a subset of RORγt+ ILC2s express the skin-homing receptor CCR10, and the frequencies of IL-17-producing ILC3s are increased at the expense of ILC2s within the lesional skin of patients with psoriasis.


Subject(s)
Interleukin-17/immunology , Lymphocytes/immunology , Psoriasis/pathology , Skin/pathology , Cells, Cultured , Humans , Interleukin-1beta/immunology , Interleukin-23 Subunit p19/immunology , Interleukin-4/immunology , Lymphocytes/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Psoriasis/immunology , Receptors, CCR10/metabolism , Skin/immunology , Transforming Growth Factor beta/metabolism
17.
Immunity ; 55(1): 115-128.e9, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021053

ABSTRACT

The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-ß-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-ß-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.


Subject(s)
Germinal Center/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Tertiary Lymphoid Structures/immunology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Gene Expression Regulation , Gene Silencing , Genotype , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Transforming Growth Factor beta/genetics
18.
Cell ; 165(3): 656-67, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27085913

ABSTRACT

The earliest events following mucosal HIV-1 infection, prior to measurable viremia, remain poorly understood. Here, by detailed necropsy studies, we show that the virus can rapidly disseminate following mucosal SIV infection of rhesus monkeys and trigger components of the inflammasome, both at the site of inoculation and at early sites of distal virus spread. By 24 hr following inoculation, a proinflammatory signature that lacked antiviral restriction factors was observed in viral RNA-positive tissues. The early innate response included expression of NLRX1, which inhibits antiviral responses, and activation of the TGF-ß pathway, which negatively regulates adaptive immune responses. These data suggest a model in which the virus triggers specific host mechanisms that suppress the generation of antiviral innate and adaptive immune responses in the first few days of infection, thus facilitating its own replication. These findings have important implications for the development of vaccines and other strategies to prevent infection.


Subject(s)
Inflammasomes/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Bone Marrow/immunology , Immunity, Innate , Immunity, Mucosal , Killer Cells, Natural/immunology , Macaca mulatta , Mitochondrial Proteins/metabolism , Monocytes/immunology , T-Lymphocytes/immunology , Transcriptome , Transforming Growth Factor beta/metabolism , Virus Replication
19.
Nat Immunol ; 19(5): 1-7, 2018 05.
Article in English | MEDLINE | ID: mdl-29662171

ABSTRACT

The cytokine transforming growth factor-ß (TGF-ß) regulates the development and homeostasis of several tissue-resident macrophage populations, including microglia. TGF-ß is not critical for microglia survival but is required for the maintenance of the microglia-specific homeostatic gene signature1,2. Under defined host conditions, circulating monocytes can compete for the microglial niche and give rise to long-lived monocyte-derived macrophages residing in the central nervous system (CNS)3-5. Whether monocytes require TGF-ß for colonization of the microglial niche and maintenance of CNS integrity is unknown. We found that abrogation of TGF-ß signaling in CX3CR1+ monocyte-derived macrophages led to rapid onset of a progressive and fatal demyelinating motor disease characterized by myelin-laden giant macrophages throughout the spinal cord. Tgfbr2-deficient macrophages were characterized by high expression of genes encoding proteins involved in antigen presentation, inflammation and phagocytosis. TGF-ß is thus crucial for the functional integration of monocytes into the CNS microenvironment.


Subject(s)
Brain/immunology , Demyelinating Diseases/immunology , Macrophages/pathology , Spinal Cord/immunology , Transforming Growth Factor beta/immunology , Animals , Brain/metabolism , Brain/pathology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Macrophages/immunology , Macrophages/metabolism , Mice , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Transforming Growth Factor beta/metabolism
20.
Immunity ; 54(2): 308-323.e6, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33421362

ABSTRACT

Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor ß1 (TGF-ß1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-ß superfamily member closely related to TGF-ß1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-ß1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.


Subject(s)
Activins/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Neurogenic Inflammation/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/metabolism , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Activins/genetics , Animals , Cell Differentiation , Cells, Cultured , Humans , Mice , Mice, Knockout , Molecular Targeted Therapy , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL