Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.672
Filter
Add more filters

Publication year range
1.
Cell ; 179(1): 251-267.e24, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31539496

ABSTRACT

In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells. Further, we demonstrate the versatility of MADR by creating glioma models with mixed reporter-identified zygosity or with "personalized" driver mutations from pediatric glioma. MADR is extensible to thousands of existing mouse lines, providing a flexible platform to democratize the generation of somatic mosaic mice. VIDEO ABSTRACT.


Subject(s)
Brain Neoplasms/genetics , Disease Models, Animal , Gene Targeting/methods , Genetic Loci/genetics , Glioma/genetics , Mutagenesis, Insertional/methods , Transgenes/genetics , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/metabolism , Recombinases/metabolism , Transfection
2.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007418

ABSTRACT

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Subject(s)
Brain/metabolism , Gene Knockout Techniques/methods , Genes, Reporter , Animals , Brain/cytology , Calcium/metabolism , Cell Line , In Situ Hybridization, Fluorescence , Light , Mice , Mice, Transgenic , Microscopy, Fluorescence , Neurons/metabolism , Optogenetics , RNA, Untranslated/genetics , Transgenes/genetics
3.
Nat Immunol ; 18(1): 96-103, 2017 01.
Article in English | MEDLINE | ID: mdl-27820810

ABSTRACT

T lymphocytes and B lymphocytes integrate activating signals to control the size of their proliferative response. Here we report that such control was achieved by timed changes in the production rate of cell-cycle-regulating proto-oncoprotein Myc, with division cessation occurring when Myc levels fell below a critical threshold. The changing pattern of the level of Myc was not affected by cell division, which identified the regulating mechanism as a cell-intrinsic, heritable temporal controller. Overexpression of Myc in stimulated T cells and B cells did not sustain cell proliferation indefinitely, as a separate 'time-to-die' mechanism, also heritable, was programmed after lymphocyte activation and led to eventual cell loss. Together the two competing cell-intrinsic timed fates created the canonical T cell and B cell immune-response pattern of rapid growth followed by loss of most cells. Furthermore, small changes in these timed processes by regulatory signals, or by oncogenic transformation, acted in synergy to greatly enhance cell numbers over time.


Subject(s)
B-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Cell Division , Cell Proliferation/genetics , Immunity, Cellular , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Death/genetics , Cell Division/genetics , Cells, Cultured , Gene Expression Regulation , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Transgenes/genetics
4.
Nature ; 621(7980): 857-867, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730992

ABSTRACT

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Subject(s)
Cystic Fibrosis , Disease Models, Animal , Ferrets , Lung , Transgenes , Animals , Humans , Animals, Genetically Modified , Cell Lineage , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/genetics , Ferrets/physiology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Trachea/cytology , Transgenes/genetics
5.
Nature ; 622(7982): 393-401, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821590

ABSTRACT

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Subject(s)
Graft Rejection , Kidney Transplantation , Macaca fascicularis , Swine , Transplantation, Heterologous , Animals , Humans , Animals, Genetically Modified , Endothelial Cells/immunology , Endothelial Cells/metabolism , Graft Rejection/immunology , Graft Rejection/prevention & control , Kidney Transplantation/methods , Polysaccharides/deficiency , Swine/genetics , Transplantation, Heterologous/methods , Transgenes/genetics
6.
Nature ; 622(7983): 552-561, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758947

ABSTRACT

Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.


Subject(s)
Central Nervous System , Imaging, Three-Dimensional , Single-Cell Analysis , Transcriptome , Animals , Mice , Brain/anatomy & histology , Brain/cytology , Brain/metabolism , Central Nervous System/anatomy & histology , Central Nervous System/cytology , Central Nervous System/metabolism , Single-Cell Analysis/methods , Spinal Cord/anatomy & histology , Spinal Cord/cytology , Spinal Cord/metabolism , Transcriptome/genetics , Single-Cell Gene Expression Analysis , Viral Tropism , Datasets as Topic , Transgenes/genetics , Imaging, Three-Dimensional/methods
7.
Nature ; 621(7977): 196-205, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612507

ABSTRACT

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Subject(s)
Healthy Aging , Hyaluronan Synthases , Hyaluronic Acid , Longevity , Mole Rats , Animals , Mice , Hyaluronic Acid/biosynthesis , Hyaluronic Acid/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/prevention & control , Mice, Transgenic , Mole Rats/genetics , Longevity/genetics , Longevity/immunology , Longevity/physiology , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Healthy Aging/genetics , Healthy Aging/immunology , Healthy Aging/physiology , Transgenes/genetics , Transgenes/physiology , Transcriptome , Neoplasms/genetics , Neoplasms/prevention & control , Oxidative Stress , Geroscience , Rejuvenation/physiology
8.
Nature ; 615(7953): 687-696, 2023 03.
Article in English | MEDLINE | ID: mdl-36356599

ABSTRACT

T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRß). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.


Subject(s)
Cell- and Tissue-Based Therapy , Gene Editing , Neoplasms , Precision Medicine , Receptors, Antigen, T-Cell , T-Lymphocytes , Transgenes , Humans , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biopsy , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/complications , Disease Progression , Encephalitis/complications , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, T-Cell Receptor alpha , Genes, T-Cell Receptor beta , Mutation , Neoplasms/complications , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Patient Safety , Precision Medicine/adverse effects , Precision Medicine/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transgenes/genetics , HLA Antigens/immunology , CRISPR-Cas Systems
9.
N Engl J Med ; 389(13): 1203-1210, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37754285

ABSTRACT

We treated a 27-year-old patient with Duchenne's muscular dystrophy (DMD) with recombinant adeno-associated virus (rAAV) serotype 9 containing dSaCas9 (i.e., "dead" Staphylococcus aureus Cas9, in which the Cas9 nuclease activity has been inactivated) fused to VP64; this transgene was designed to up-regulate cortical dystrophin as a custom CRISPR-transactivator therapy. The dose of rAAV used was 1×1014 vector genomes per kilogram of body weight. Mild cardiac dysfunction and pericardial effusion developed, followed by acute respiratory distress syndrome (ARDS) and cardiac arrest 6 days after transgene treatment; the patient died 2 days later. A postmortem examination showed severe diffuse alveolar damage. Expression of transgene in the liver was minimal, and there was no evidence of AAV serotype 9 antibodies or effector T-cell reactivity in the organs. These findings indicate that an innate immune reaction caused ARDS in a patient with advanced DMD treated with high-dose rAAV gene therapy. (Funded by Cure Rare Disease.).


Subject(s)
Dystrophin , Genetic Therapy , Muscular Dystrophy, Duchenne , Respiratory Distress Syndrome , Transgenes , Adult , Humans , Antibodies , Dystrophin/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Transgenes/genetics , Transgenes/immunology , Fatal Outcome , Immunity, Innate/genetics , Immunity, Innate/immunology
10.
Nat Immunol ; 15(2): 161-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24362890

ABSTRACT

CD11b(+) dendritic cells (DCs) seem to be specialized for presenting antigens via major histocompatibility (MHC) class II complexes to stimulate helper T cells, but the genetic and regulatory basis for this is not established. Conditional deletion of Irf4 resulted in loss of CD11b(+) DCs, impaired formation of peptide-MHC class II complexes and defective priming of helper T cells but not of cytotoxic T lymphocyte (CTL) responses. Gene expression and chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analyses delineated an IRF4-dependent regulatory module that programs enhanced MHC class II antigen presentation. Expression of the transcription factor IRF4 but not of IRF8 restored the ability of IRF4-deficient DCs to efficiently process and present antigen to MHC class II-restricted T cells and promote helper T cell responses. We propose that the evolutionary divergence of IRF4 and IRF8 facilitated the specialization of DC subsets for distinct modes of antigen presentation and priming of helper T cell versus CTL responses.


Subject(s)
Antigen Presentation/genetics , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Interferon Regulatory Factors/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Histocompatibility Antigens Class II/genetics , Interferon Regulatory Factors/genetics , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding/genetics , Transgenes/genetics
11.
Nat Immunol ; 15(2): 168-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413774

ABSTRACT

STAT1 is an indispensable component of a heterotrimer (ISGF3) and a STAT1 homodimer (GAF) that function as transcription regulators in type 1 and type 2 interferon signaling, respectively. To investigate the importance of STAT1-cooperative DNA binding, we generated gene-targeted mice expressing cooperativity-deficient STAT1 with alanine substituted for Phe77. Neither ISGF3 nor GAF bound DNA cooperatively in the STAT1F77A mouse strain, but type 1 and type 2 interferon responses were affected differently. Type 2 interferon-mediated transcription and antibacterial immunity essentially disappeared owing to defective promoter recruitment of GAF. In contrast, STAT1 recruitment to ISGF3 binding sites and type 1 interferon-dependent responses, including antiviral protection, remained intact. We conclude that STAT1 cooperativity is essential for its biological activity and underlies the cellular responses to type 2, but not type 1 interferon.


Subject(s)
Interferon Type I/metabolism , Interferon-gamma/metabolism , Mutant Proteins/metabolism , STAT1 Transcription Factor/metabolism , Animals , Cells, Cultured , DNA/metabolism , Interferon-Stimulated Gene Factor 3/metabolism , Listeriosis/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutant Proteins/genetics , Protein Binding/genetics , Protein Engineering , STAT1 Transcription Factor/genetics , Signal Transduction/genetics , Transgenes/genetics , Vesicular stomatitis Indiana virus
12.
Nat Immunol ; 15(4): 343-53, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24531343

ABSTRACT

The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , DNA Virus Infections/immunology , DNA Viruses/immunology , Inflammasomes/metabolism , Macrophages/immunology , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Carrier Proteins/genetics , Caspase 1/metabolism , DNA-Binding Proteins , HEK293 Cells , Humans , Immunity/genetics , Interferon Type I/genetics , Interferon Type I/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Sequence Alignment , Transgenes/genetics , Viral Proteins/genetics , mTOR Associated Protein, LST8 Homolog
13.
Plant Cell ; 35(9): 3398-3412, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37309669

ABSTRACT

Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.


Subject(s)
Plastids , RNA, Double-Stranded , RNA Interference , Transgenes/genetics , Plastids/genetics , Plastids/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Small Interfering/genetics , Gene Silencing , Nicotiana/genetics , Nicotiana/metabolism
14.
Plant Cell ; 35(11): 3926-3936, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37602710

ABSTRACT

We encountered unexpected transgene silencing in Arabidopsis thaliana sperm cells; transgenes encoding proteins with no specific intracellular localization (cytoplasmic proteins) were silenced transcriptionally or posttranscriptionally. The mRNA of cytoplasmic protein transgenes tagged with a fluorescent protein gene was significantly reduced, resulting in undetectable fluorescent protein signals in the sperm cell. Silencing of the cytoplasmic protein transgenes in the sperm cell did not affect the expression of either its endogenous homologous genes or cotransformed transgenes encoding a protein with targeted intracellular localization. This transgene silencing in the sperm cell persisted in mutants of the major gene silencing machinery including DNA methylation. The incomprehensible, yet real, transgene silencing phenotypes occurring in the sperm cell could mislead the interpretation of experimental results in plant reproduction, and this Commentary calls attention to that risk and highlights details of this novel cytoplasmic protein transgene silencing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Seeds/metabolism , Transgenes/genetics , Gene Silencing , DNA Methylation/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics
15.
J Immunol ; 212(11): 1744-1753, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38629917

ABSTRACT

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.


Subject(s)
Animals, Genetically Modified , Chickens , Immunoglobulin Heavy Chains , Single-Domain Antibodies , Animals , Chickens/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/immunology , Transgenes/genetics , B-Lymphocytes/immunology , Antibodies, Viral/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Humans
16.
Nat Immunol ; 14(1): 82-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23202272

ABSTRACT

Phosphorylation of the T cell antigen receptor (TCR) by the tyrosine kinase Lck is an essential step in the activation of T cells. Because Lck is constitutively active, spatial organization may regulate TCR signaling. Here we found that Lck distributions on the molecular level were controlled by the conformational states of Lck, with the open, active conformation inducing clustering and the closed, inactive conformation preventing clustering. In contrast, association with lipid domains and protein networks were not sufficient or necessary for Lck clustering. Conformation-driven Lck clustering was highly dynamic, so that TCR triggering resulted in Lck clusters that contained phosphorylated TCRs but excluded the phosphatase CD45. Our data suggest that Lck conformational states represent an intrinsic mechanism for the intermolecular organization of early T cell signaling.


Subject(s)
Allosteric Regulation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Protein Conformation , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Humans , Jurkat Cells , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Membrane Microdomains/metabolism , Microscopy, Fluorescence , Mutant Proteins/genetics , Receptor Cross-Talk , Receptors, Antigen, T-Cell/immunology , Signal Transduction , Structure-Activity Relationship , Transgenes/genetics
17.
Nat Immunol ; 14(5): 489-99, 2013 May.
Article in English | MEDLINE | ID: mdl-23563690

ABSTRACT

Newly activated CD8(+) T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals that mediate metabolic reprogramming remain poorly defined. Here we demonstrate an essential role for sterol regulatory element-binding proteins (SREBPs) in the acquisition of effector-cell metabolism. Without SREBP signaling, CD8(+) T cells were unable to blast, which resulted in attenuated clonal expansion during viral infection. Mechanistic studies indicated that SREBPs were essential for meeting the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs were dispensable for homeostatic proliferation, which indicated a context-specific requirement for SREBPs in effector responses. Our studies provide insights into the molecular signals that underlie the metabolic reprogramming of CD8(+) T cells during the transition from quiescence to activation.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Adaptive Immunity/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Proliferation , Cells, Cultured , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , RNA, Small Interfering/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Transgenes/genetics
18.
Nat Immunol ; 14(5): 470-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23542741

ABSTRACT

Uncontrolled activation of tumor necrosis factor receptor-associated factor (TRAF) proteins may result in profound tissue injury by linking surface signals to cytokine release. Here we show that a ubiquitin E3 ligase component, Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by destabilizing a sentinel TRAF inhibitor, Fbxl2. Fbxo3 and TRAF protein in circulation positively correlated with cytokine responses in subjects with sepsis, and we identified a polymorphism in human Fbxo3, with one variant being hypofunctional. A small-molecule inhibitor targeting Fbxo3 was sufficient to lessen severity of cytokine-driven inflammation in several mouse disease models. These studies identified a pathway of innate immunity that may be useful to detect subjects with altered immune responses during critical illness or provide a basis for therapeutic intervention targeting TRAF protein abundance.


Subject(s)
F-Box Proteins/metabolism , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Sepsis/immunology , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Animals , Cecum/immunology , Cecum/surgery , Cell Line , Cytokines/metabolism , Disease Models, Animal , F-Box Motifs/genetics , F-Box Proteins/genetics , Humans , Immunomodulation , Inflammation/genetics , Mice , Mice, Inbred C57BL , Polymorphism, Genetic , Protein Stability , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/genetics , RNA, Small Interfering/genetics , Sepsis/genetics , Transgenes/genetics
19.
Nature ; 571(7763): 107-111, 2019 07.
Article in English | MEDLINE | ID: mdl-31217582

ABSTRACT

Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes.


Subject(s)
Diarrhea/congenital , Diarrhea/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Genes , Intestines/physiology , Sequence Deletion/genetics , Animals , Chromosomes, Human, Pair 16/genetics , Disease Models, Animal , Female , Genes, Reporter , Genetic Loci/genetics , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Pedigree , Phenotype , Transcriptional Activation , Transcriptome/genetics , Transgenes/genetics
20.
Nature ; 566(7742): 105-109, 2019 02.
Article in English | MEDLINE | ID: mdl-30675057

ABSTRACT

A gene drive biases the transmission of one of the two copies of a gene such that it is inherited more frequently than by random segregation. Highly efficient gene drive systems have recently been developed in insects, which leverage the sequence-targeted DNA cleavage activity of CRISPR-Cas9 and endogenous homology-directed repair mechanisms to convert heterozygous genotypes to homozygosity1-4. If implemented in laboratory rodents, similar systems would enable the rapid assembly of currently impractical genotypes that involve multiple homozygous genes (for example, to model multigenic human diseases). To our knowledge, however, such a system has not yet been demonstrated in mammals. Here we use an active genetic element that encodes a guide RNA, which is embedded in the mouse tyrosinase (Tyr) gene, to evaluate whether targeted gene conversion can occur when CRISPR-Cas9 is active in the early embryo or in the developing germline. Although Cas9 efficiently induces double-stranded DNA breaks in the early embryo and male germline, these breaks are not corrected by homology-directed repair. By contrast, Cas9 expression limited to the female germline induces double-stranded breaks that are corrected by homology-directed repair, which copies the active genetic element from the donor to the receiver chromosome and increases its rate of inheritance in the next generation. These results demonstrate the feasibility of CRISPR-Cas9-mediated systems that bias inheritance of desired alleles in mice and that have the potential to transform the use of rodent models in basic and biomedical research.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Conversion , Gene Drive Technology/methods , Germ-Line Mutation/genetics , Heterozygote , Homozygote , Alleles , Animals , Breeding , CRISPR-Associated Protein 9/genetics , Chromosomes, Mammalian/genetics , DNA Breaks, Double-Stranded , Disease Models, Animal , Embryo, Mammalian/enzymology , Embryo, Mammalian/metabolism , Female , Integrases/genetics , Integrases/metabolism , Male , Mice , Mice, Transgenic , Monophenol Monooxygenase/genetics , RNA, Guide, Kinetoplastida/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL