Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
Add more filters

Publication year range
1.
Cell ; 173(7): 1650-1662.e14, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29887376

ABSTRACT

NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.


Subject(s)
Escherichia coli Proteins/metabolism , Peptide Elongation Factors/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Amino Acid Sequence , Catalytic Domain , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Nucleic Acid Conformation , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Protein Binding , Protein Structure, Quaternary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Trans-Activators/chemistry , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , rRNA Operon/genetics
2.
Nucleic Acids Res ; 51(15): 8085-8101, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37351576

ABSTRACT

Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1-2 rrn operons.


Subject(s)
Escherichia coli , rRNA Operon , Escherichia coli/metabolism , rRNA Operon/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Transcription, Genetic , RNA, Ribosomal/genetics
3.
Nucleic Acids Res ; 50(20): 11654-11669, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36408918

ABSTRACT

Streptomyces are prolific producers of specialized metabolites with applications in medicine and agriculture. These bacteria possess a large linear chromosome genetically compartmentalized: core genes are grouped in the central part, while terminal regions are populated by poorly conserved genes. In exponentially growing cells, chromosome conformation capture unveiled sharp boundaries formed by ribosomal RNA (rrn) operons that segment the chromosome into multiple domains. Here we further explore the link between the genetic distribution of rrn operons and Streptomyces genetic compartmentalization. A large panel of genomes of species representative of the genus diversity revealed that rrn operons and core genes form a central skeleton, the former being identifiable from their core gene environment. We implemented a new nomenclature for Streptomyces genomes and trace their rrn-based evolutionary history. Remarkably, rrn operons are close to pericentric inversions. Moreover, the central compartment delimited by rrn operons has a very dense, nearly invariant core gene content. Finally, this compartment harbors genes with the highest expression levels, regardless of gene persistence and distance to the origin of replication. Our results highlight that rrn operons are structural boundaries of a central functional compartment prone to transcription in Streptomyces.


Subject(s)
Streptomyces , Streptomyces/genetics , rRNA Operon , Chromosomes, Bacterial/genetics , RNA, Ribosomal/genetics
4.
Nucleic Acids Res ; 50(22): 12601-12620, 2022 12 09.
Article in English | MEDLINE | ID: mdl-35552441

ABSTRACT

Quick growth restart after upon encountering favourable environmental conditions is a major fitness contributor in natural environment. It is widely assumed that the time required to restart growth after nutritional upshift is determined by how long it takes for cells to synthesize enough ribosomes to produce the proteins required to reinitiate growth. Here we show that a reduction in the capacity to synthesize ribosomes by reducing number of ribosomal RNA (rRNA) operons (rrn) causes a longer transition from stationary phase to growth of Escherichia coli primarily due to high mortality rates. Cell death results from DNA replication blockage and massive DNA breakage at the sites of the remaining rrn operons that become overloaded with RNA polymerases (RNAPs). Mortality rates and growth restart duration can be reduced by preventing R-loop formation and improving DNA repair capacity. The same molecular mechanisms determine the duration of the recovery phase after ribosome-damaging stresses, such as antibiotics, exposure to bile salts or high temperature. Our study therefore suggests that a major function of rrn operon multiplicity is to ensure that individual rrn operons are not saturated by RNAPs, which can result in catastrophic chromosome replication failure and cell death during adaptation to environmental fluctuations.


The ability to modulate translation capacity, which resides greatly on a number of ribosomes, provides robustness in fluctuating environments. Because translation is energetically the most expensive process in cells, cells must constantly adapt the rate of ribosome production to resource availability. This is primarily achieved by regulating ribosomal RNA (rRNA) synthesis, to which ribosomal proteins synthesis is adjusted. The multiplicity of rRNA encoding operons per bacterial genome exceeds requirements for the maximal growth rates in non-stress conditions. In this study, the authors provide evidence that a major function of rRNA operon multiplicity is to ensure that individual operons are not saturated by RNA polymerases during adaptation to environmental fluctuations, which can result in catastrophic chromosome replication failure and cell death.


Subject(s)
Genome, Bacterial , rRNA Operon , Escherichia coli/metabolism , Operon , Ribosomes/genetics , Ribosomes/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Genomic Instability
5.
Mol Ecol ; 32(23): 6330-6344, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35593386

ABSTRACT

High-throughput sequencing has substantially improved our understanding of fungal diversity. However, the short read (<500 bp) length of current second-generation sequencing approaches provides limited taxonomic and phylogenetic resolution for species discrimination. Longer sequences containing more information are highly desired to provide greater taxonomic resolution. Here, we amplified full-length rRNA operons (~5.5 kb) and established a corresponding fungal rRNA operon database for ONT sequences (FRODO), which contains ONT sequences representing eight phyla, 41 classes, 109 orders, 256 families, 524 genera and 1116 species. We also benchmarked the optimal method for sequence classification and determined that the RDP classifier based on our FRODO database was capable of improving the classification of ONT reads, with an average of 98%-99% reads correctly classified at the genus or species level. We investigated the applicability of our approach in three representative mycobiomes, namely, the soil, marine and human gut mycobiomes, and found that the gut contains the largest number of unknown species (over 90%), followed by the marine (42%) and soil (33.8%) mycobiomes. We also observed a distinct difference in the composition of the marine and soil mycobiomes, with the highest richness and diversity detected in soils. Overall, our study provides a systematic approach for mycobiome studies and revealed that the previous methods might have underestimated the diversity of mycobiome species. Future application of this method will lead to a better understanding of the taxonomic and functional diversity of fungi in environmental and health-related mycobiomes.


Subject(s)
Mycobiome , Nanopore Sequencing , Humans , Mycobiome/genetics , rRNA Operon , Phylogeny , Soil , High-Throughput Nucleotide Sequencing/methods , Fungi/genetics
6.
Mol Cell ; 59(5): 768-80, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26257284

ABSTRACT

RNA polymerase binds tightly to DNA to recognize promoters with high specificity but then releases these contacts during the initial stage of transcription. We report a site-specific crosslinking approach to map the DNA path in bacterial transcription intermediates at amino acid and nucleotide resolution. After validating the approach by showing that the DNA path in open complexes (RPO) is the same as in high-resolution X-ray structures, we define the path following substrate addition in "scrunched" complexes (RPITC). The DNA bulges that form within the transcription bubble in RPITC are positioned differently on the two strands. Our data suggest that the non-template strand bulge is extruded into solvent in complexes containing a 5-mer RNA, whereas the template strand bulge remains within the template strand tunnel, exerting stress on interactions between the ß flap, ß' clamp, and σ3.2. We propose that this stress contributes to σ3.2 displacement from the RNA exit channel, facilitating promoter escape.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Amino Acids/chemistry , Base Sequence , Cross-Linking Reagents , Crystallography, X-Ray , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Nucleic Acid Conformation , Promoter Regions, Genetic , Protein Conformation , Transcription, Genetic , rRNA Operon
7.
Parasitol Res ; 120(6): 2037-2046, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33893550

ABSTRACT

The first data on a whole mitochondrial genome of Haploporidae, Parasaccocoelium mugili (Digenea: Haploporata: Haploporidae) was generated using the next-generation sequencing (NGS) approach. We sequenced the complete mitochondrial DNA (mtDNA) and ribosomal operon of Parasaccocoelium mugili, intestine parasite of mullet fish. The mtDNA of P. mugili contained 14,021 bp, including 12 protein-coding genes, two ribosomal genes, 22 tRNA genes, and non-coding region. The ribosomal operon of P. mugili was 8308 bp in length, including 18S rRNA gene (1981 bp), ITS1 rDNA (955 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (268 bp), 28S rRNA gene (4180 bp), and ETS (767 bp). We used the mtDNA protein-coding regions to make phylogenetic reconstructions of Haploporidae. Additionally, we performed the sequence cluster analysis based on codon usage bias of most of currently available mitochondrial genome data for trematodes. The observed gene arrangement in mtDNA sequence of P. mugili is identical to those of Plagiorchis maculosus (Rudolphi, 1802). Results of maximum likelihood (ML) phylogenetic analysis showed that P. mugili was closely related to Paragonimus species from the suborder Xiphidiata. The results of sequence cluster analysis based on codon usage bias showed that P. mugili has the highest similarity with Plagiorchis maculosus (Xiphidiata). Our results do not contradict to proposing a new suborder for Haploporoidea-Haploporata. On the basis of obtained results, the relationship between mitochondrial protein-coding gene rearrangements and synonymous nucleotide substitutions in mitochondrial genomes has been suggested.


Subject(s)
Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , Trematoda/genetics , Animals , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , Fish Diseases/parasitology , Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA , Smegmamorpha/parasitology , Trematoda/classification , Trematode Infections/parasitology , Trematode Infections/veterinary , rRNA Operon/genetics
8.
BMC Evol Biol ; 19(1): 235, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31881939

ABSTRACT

BACKGROUND: Understanding the phylogenetic relationships among species is one of the main goals of systematic biology. Simultaneously, credible phylogenetic hypotheses are often the first requirement for unveiling the evolutionary history of traits and for modelling macroevolutionary processes. However, many non-model taxa have not yet been sequenced to an extent such that statistically well-supported molecular phylogenies can be constructed for these purposes. Here, we use a genome-skimming approach to extract sequence information for 15 mitochondrial and 2 ribosomal operon genes from the cheilostome bryozoan family, Adeonidae, Busk, 1884, whose current systematics is based purely on morphological traits. The members of the Adeonidae are, like all cheilostome bryozoans, benthic, colonial, marine organisms. Adeonids are also geographically widely-distributed, often locally common, and are sometimes important habitat-builders. RESULTS: We successfully genome-skimmed 35 adeonid colonies representing 6 genera (Adeona, Adeonellopsis, Bracebridgia, Adeonella, Laminopora and Cucullipora). We also contributed 16 new, circularised mitochondrial genomes to the eight previously published for cheilostome bryozoans. Using the aforementioned mitochondrial and ribosomal genes, we inferred the relationships among these 35 samples. Contrary to some previous suggestions, the Adeonidae is a robustly supported monophyletic clade. However, the genera Adeonella and Laminopora are in need of revision: Adeonella is polyphyletic and Laminopora paraphyletically forms a clade with some Adeonella species. Additionally, we assign a sequence clustering identity using cox1 barcoding region of 99% at the species and 83% at the genus level. CONCLUSIONS: We provide sequence data, obtained via genome-skimming, that greatly increases the resolution of the phylogenetic relationships within the adeonids. We present a highly-supported topology based on 17 genes and substantially increase availability of circularised cheilostome mitochondrial genomes, and highlight how we can extend our pipeline to other bryozoans.


Subject(s)
Bryozoa/classification , Bryozoa/genetics , Animals , Biological Evolution , Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Sequence Analysis, DNA , rRNA Operon
9.
Environ Microbiol ; 21(7): 2485-2498, 2019 07.
Article in English | MEDLINE | ID: mdl-31012228

ABSTRACT

Amplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions and to discover novel lineages. However, traditional short amplicons often do not contain enough information to confidently resolve their phylogeny. Here we present a cost-effective protocol that amplifies a large part of the rRNA operon and sequences the amplicons with PacBio technology. We tested our method on a mock community and developed a read-curation pipeline that reduces the overall read error rate to 0.18%. Applying our method on four environmental samples, we captured near full-length rRNA operon amplicons from a large diversity of prokaryotes. The method operated at moderately high-throughput (22286-37,850 raw ccs reads) and generated a large amount of putative novel archaeal 23S rRNA gene sequences compared to the archaeal SILVA database. These long amplicons allowed for higher resolution during taxonomic classification by means of long (∼1000 bp) 16S rRNA gene fragments and for substantially more confident phylogenies by means of combined near full-length 16S and 23S rRNA gene sequences, compared to shorter traditional amplicons (250 bp of the 16S rRNA gene). We recommend our method to those who wish to cost-effectively and confidently estimate the phylogenetic diversity of prokaryotes in environmental samples at high throughput.


Subject(s)
Archaea/classification , Archaea/genetics , DNA, Archaeal/genetics , High-Throughput Nucleotide Sequencing/methods , Operon , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Archaea/isolation & purification , Microbiota , Phylogeny , Sequence Analysis, DNA/methods , rRNA Operon
10.
J Clin Microbiol ; 57(6)2019 06.
Article in English | MEDLINE | ID: mdl-30918046

ABSTRACT

Genotyping based on internal transcribed spacer 1 (ITS1) and ITS2 of the rRNA operon has played an important role in understanding the transmission and epidemiology of Pneumocystis jirovecii, one of the major opportunistic pathogens in individuals with AIDS and other immunocompromised individuals. The widespread use of this typing system has resulted in several problems, including inconsistent genotype nomenclatures, difficult data transferability, and complicated interpretation of the length variation in multiple homopolymeric tracts. The aim of this study was to establish a new, simplified genotype nomenclature system for P. jirovecii based on the ITS1 and ITS2 sequences. We first analyzed the complete ITS1, 5.8S rRNA gene, and ITS2 sequences (termed ITS1-5.8S-ITS2) in 27 recent P. jirovecii isolates from China and identified 18 unique genotypes. Subsequently, we performed a comprehensive classification of more than 400 ITS1- and ITS2-related sequences from GenBank and an in-depth evaluation of the length variation of multiple homopolymeric tracts within ITS1-5.8S-ITS2. Integration of the results from these analyses led to a new, simplified genotype nomenclature system including 62 unique ITS1-5.8S-ITS2 genotypes, simply designated types 1 through 62. This new system offers several advantages over traditional ITS1- and ITS2-based typing systems, including a simpler analysis and interpretation process, a higher discriminative power, and no limitation in assigning potential new genotypes. This new system is expected to facilitate the standardization of P. jirovecii genotyping and easy data exchanges across different laboratories.


Subject(s)
DNA, Ribosomal Spacer/genetics , Molecular Typing , Pneumocystis Infections/diagnosis , Pneumocystis Infections/microbiology , Pneumocystis carinii/classification , Pneumocystis carinii/genetics , RNA, Ribosomal, 5.8S/genetics , rRNA Operon , Adult , Aged , Base Sequence , Coinfection , Female , Genotype , Humans , Male , Middle Aged , Molecular Typing/methods , Molecular Typing/standards
11.
Proc Natl Acad Sci U S A ; 113(13): E1787-95, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26976590

ABSTRACT

Most Escherichia coli promoters initiate transcription with a purine 7 or 8 nt downstream from the -10 hexamer, but some promoters, including the ribosomal RNA promoter rrnB P1, start 9 nt from the -10 element. We identified promoter and RNA polymerase determinants of this noncanonical rrnB P1 start site using biochemical and genetic approaches including mutational analysis of the promoter, Fe(2+) cleavage assays to monitor template strand positions near the active-site, and Bpa cross-linking to map the path of open complex DNA at amino acid and nucleotide resolution. We find that mutations in several promoter regions affect transcription start site (TSS) selection. In particular, we show that the absence of strong interactions between the discriminator region and σ region 1.2 and between the extended -10 element and σ region 3.0, identified previously as a determinant of proper regulation of rRNA promoters, is also required for the unusual TSS. We find that the DNA in the single-stranded transcription bubble of the rrnB P1 promoter complex expands and is "scrunched" into the active site channel of RNA polymerase, similar to the situation in initial transcribing complexes. However, in the rrnB P1 open complex, scrunching occurs before RNA synthesis begins. We find that the scrunched open complex exhibits reduced abortive product synthesis, suggesting that scrunching and unusual TSS selection contribute to the extraordinary transcriptional activity of rRNA promoters by increasing promoter escape, helping to offset the reduction in promoter activity that would result from the weak interactions with σ.


Subject(s)
Escherichia coli/genetics , Promoter Regions, Genetic/genetics , Transcription Initiation Site , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Gene Expression Regulation, Bacterial , Mutation , Nucleic Acid Conformation , Nucleotides/genetics , Nucleotides/metabolism , Transcription, Genetic , rRNA Operon/genetics
12.
J Eukaryot Microbiol ; 65(5): 648-660, 2018 07.
Article in English | MEDLINE | ID: mdl-29418041

ABSTRACT

The latest studies of chloroplast genomes of phototrophic euglenoids yielded different results according to intrageneric variability such as cluster arrangement or diversity of introns. Although the genera Euglena and Monomorphina in those studies show high syntenic arrangements at the intrageneric level, the two investigated Eutreptiella species comprise low synteny. Furthermore Trachelomonas volvocina show low synteny to the chloroplast genomes of the sister genera Monomorphina aenigmatica, M. parapyrum, Cryptoglena skujae, Euglenaria anabaena, Strombomonas acuminata, all of which were highly syntenic. Consequently, this study aims at the analysis of the cpGenome of Trachelomonas grandis and a comparative examination of T. volvocina to investigate whether the cpGenomes are of such resemblance as could be expected for a genus within the Euglenaceae. Although these analyses resulted in almost identical gene content to other Euglenaceae, the chloroplast genome showed significant novelties: In the rRNA operon, we detected group II introns, not yet found in any other cpGenome of Euglenaceae and a substantially heterogeneous cluster arrangement in the genus Trachelomonas. The phylogenomic analysis with 84 genes of 19 phototrophic euglenoids and 18 cpGenome sequences from Chlorophyta and Streptophyta resulted in a well-supported cpGenome phylogeny, which is in accordance to former phylogenetic analyses.


Subject(s)
Euglenida/genetics , Genome, Chloroplast , Phylogeny , Chloroplasts/genetics , DNA, Chloroplast/genetics , Euglenida/classification , Euglenida/metabolism , Genetic Variation , Introns , Phototrophic Processes , Synteny , rRNA Operon
13.
Antonie Van Leeuwenhoek ; 111(11): 2095-2105, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29785674

ABSTRACT

Gemmata obscuriglobus is a Gram-negative bacterium with several intriguing biological features. Here, we present a complete, de novo whole genome assembly for G. obscuriglobus which consists of a single, circular 9 Mb chromosome, with no plasmids detected. The genome was annotated using the NCBI Prokaryotic Genome Annotation pipeline to generate common gene annotations. Analysis of the rRNA genes revealed three interesting features for a bacterium. First, linked G. obscuriglobus rrn operons have a unique gene order, 23S-5S-16S, compared to typical prokaryotic rrn operons (16S-23S-5S). Second, G. obscuriglobus rrn operons can either be linked or unlinked (a 16S gene is in a separate genomic location from a 23S and 5S gene pair). Third, all of the 23S genes (5 in total) have unique polymorphisms. Genome analysis of a different Gemmata species (SH-PL17), revealed a similar 23S-5S-16S gene order in all of its linked rrn operons and the presence of an unlinked operon. Together, our findings show that unique and rare features in Gemmata rrn operons among prokaryotes provide a means to better define the evolutionary relatedness of Gemmata species and the divergence time for different Gemmata species. Additionally, these rrn operon differences provide important insights into the rrn operon architecture of common ancestors of the planctomycetes.


Subject(s)
Genome, Bacterial/genetics , Operon/genetics , Planctomycetales/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , rRNA Operon/genetics
14.
J Biol Chem ; 291(15): 8090-108, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26872975

ABSTRACT

NusA is an essential protein that binds to RNA polymerase and also to the nascent RNA and influences transcription by inducing pausing and facilitating the process of transcription termination/antitermination. Its participation in Rho-dependent transcription termination has been perceived, but the molecular nature of this involvement is not known. We hypothesized that, because both Rho and NusA are RNA-binding proteins and have the potential to target the same RNA, the latter is likely to influence the global pattern of the Rho-dependent termination. Analyses of the nascent RNA binding properties and consequent effects on the Rho-dependent termination functions of specific NusA-RNA binding domain mutants revealed an existence of Rho-NusA direct competition for the overlappingnut(NusA-binding site) andrut(Rho-binding site) sites on the RNA. This leads to delayed entry of Rho at therutsite that inhibits the latter's RNA release process. High density tiling microarray profiles of these NusA mutants revealed that a significant number of genes, together with transcripts from intergenic regions, are up-regulated. Interestingly, the majority of these genes were also up-regulated when the Rho function was compromised. These results provide strong evidence for the existence of NusA-binding sites in different operons that are also the targets of Rho-dependent terminations. Our data strongly argue in favor of a direct competition between NusA and Rho for the access of specific sites on the nascent transcripts in different parts of the genome. We propose that this competition enables NusA to function as a global antagonist of the Rho function, which is unlike its role as a facilitator of hairpin-dependent termination.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , RNA, Bacterial/metabolism , Rho Factor/metabolism , Transcriptional Elongation Factors/metabolism , Base Sequence , Binding Sites , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Transcription, Genetic , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics , rRNA Operon
15.
J Eukaryot Microbiol ; 64(1): 31-44, 2017 01.
Article in English | MEDLINE | ID: mdl-27254767

ABSTRACT

A comparative analysis of the chloroplast genome of Euglena mutabilis underlined a high diversity in the evolution of plastids in euglenids. Gene clusters in more derived Euglenales increased in complexity with only a few, but remarkable changes in the genus Euglena. Euglena mutabilis differed from other Euglena species in a mirror-inverted arrangement of 12 from 15 identified clusters, making it very likely that the emergence at the base of the genus Euglena, which has been considered a long branch artifact, is truly a probable position. This was corroborated by many similarities in gene arrangement and orientation with Strombomonas and Monomorphina, rendering the genome organization of E. mutabilis in certain clusters as plesiomorphic feature. By RNA analysis exact exon-intron boundaries and the type of the 77 introns identified were mostly determined unambiguously. A detailed intron study of psbC pointed at two important issues: First, the number of introns varied even between species, and no trend from few to many introns could be observed. Second, mat1 was localized in Eutreptiales exclusively in intron 1, and mat2 was not identified. With the emergence of Euglenaceae in most species, a new intron containing mat2 inserted in front of the previous intron 1 and thereby became intron 2 with mat1.


Subject(s)
Euglena/genetics , Genome, Chloroplast/genetics , Introns , Base Sequence , Biological Evolution , Chloroplasts/genetics , DNA, Chloroplast/genetics , DNA, Chloroplast/isolation & purification , DNA, Protozoan/genetics , Euglena/classification , Evolution, Molecular , Exons , Gene Order , Multigene Family , Open Reading Frames , Protozoan Proteins/genetics , Sequence Analysis , rRNA Operon
16.
BMC Genomics ; 17: 315, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-27129708

ABSTRACT

BACKGROUND: Studies have detected mis-assemblies in genomes of the species Corynebacterium pseudotuberculosis. These new discover have been possible due to the evolution of the Next-Generation Sequencing platforms, which have provided sequencing with accuracy and reduced costs. In addition, the improving of techniques for construction of high accuracy genomic maps, for example, Whole-genome mapping (WGM) (OpGen Inc), have allow high-resolution assembly that can detect large rearrangements. RESULTS: In this work, we present the resequencing of Corynebacterium pseudotuberculosis strain 1002 (Cp1002). Cp1002 was the first strain of this species sequenced in Brazil, and its genome has been used as model for several studies in silico of caseous lymphadenitis disease. The sequencing was performed using the platform Ion PGM and fragment library (200 bp kit). A restriction map was constructed, using the technique of WGM with the enzyme KpnI. After the new assembly process, using WGM as scaffolder, we detected a large inversion with size bigger than one-half of genome. A specific analysis using BLAST and NR database shows that the inversion occurs between two homology RNA ribosomal regions. CONCLUSION: In conclusion, the results showed by WGM could be used to detect mismatches in assemblies, providing genomic maps with high resolution and allow assemblies with more accuracy and completeness. The new assembly of C. pseudotuberculosis was deposited in GenBank under the accession no. CP012837.


Subject(s)
Chromosome Mapping/methods , Corynebacterium pseudotuberculosis/genetics , Genome, Bacterial , Genomics/methods , rRNA Operon/genetics , DNA, Bacterial/genetics , Gene Library , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
17.
Antimicrob Agents Chemother ; 60(12): 7313-7320, 2016 12.
Article in English | MEDLINE | ID: mdl-27671073

ABSTRACT

The distinct epidemiology of original hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) and early community-associated MRSA (CA-MRSA) is largely unexplained. S. aureus carries either five or six rRNA operon copies. Evidence is provided for a scenario in which MRSA has adapted to the hospital environment by rRNA operon loss (six to five copies) due to antibiotic pressure. Early CA-MRSA, in contrast, results from wild-type methicillin-susceptible S. aureus (MSSA) that acquired mecA without loss of an rRNA operon. Of the HA-MRSA isolates (n = 77), 67.5% had five rRNA operon copies, compared to 23.2% of the CA-MRSA isolates (n = 69) and 7.7% of MSSA isolates (n = 195) (P < 0.001). In addition, 105 MSSA isolates from cystic fibrosis patients were tested, because these patients are repeatedly treated with antibiotics; 32.4% of these isolates had five rRNA operon copies. For all subsets, a correlation between resistance profile and rRNA copy number was found. Furthermore, we showed that in vitro antibiotic pressure may result in rRNA operon copy loss. We also showed that without antibiotic pressure, S. aureus isolates containing six rRNA copies are more fit than isolates with five copies. We conclude that HA-MRSA and cystic fibrosis isolates most likely have adapted to an environment with high antibiotic pressure by the loss of an rRNA operon copy. This loss has facilitated resistance development, which promoted survival in these niches. However, strain fitness decreased, which explains their lack of success in the community. In contrast, CA-MRSA isolates retained six rRNA operon copies, rendering them fitter and thereby able to survive and spread in the community.


Subject(s)
Community-Acquired Infections/epidemiology , Cross Infection/epidemiology , Methicillin-Resistant Staphylococcus aureus/genetics , RNA, Bacterial/genetics , Staphylococcal Infections/epidemiology , rRNA Operon/genetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Typing Techniques , Community-Acquired Infections/microbiology , Cross Infection/microbiology , Cystic Fibrosis/microbiology , Genome, Bacterial/genetics , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Polymorphism, Genetic/genetics , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
18.
Appl Environ Microbiol ; 82(21): 6386-6394, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27542937

ABSTRACT

Insertion sequences (ISs) are widespread in the genome of Mycoplasma bovis strain PG45, but no ISs were identified within its two tandemly positioned rRNA operons (rrn1 and rrn2). However, characterization of the rrn locus in 70 M. bovis isolates revealed the presence of ISs related to the ISMbov1 (IS30 family) and ISMbov4 (IS4 family) isomers in 35 isolates. ISs were inserted into intergenic region 1 (IGR-1) or IGR-3, which are the putative promoter regions of rrn1 and rrn2, respectively, and into IGR-5, located downstream of the rrl2 gene. Seven different configurations (A to G) of the rrn locus with respect to ISs were identified, including those in five annotated genomes. The transcriptional start site for the single rrn operon in M. bovis strain 88127 was mapped within IGR-1, 60 bp upstream of the rrs gene. Notably, only 1 nucleotide separated the direct repeat (DR) for ISMbov1 and the promoter -35 element in configuration D, while in configuration F, the -35 motif was a part of the ISMbov1 DR. Relative quantitative real-time (qRT) PCR analysis and growth rate comparisons detected a significant increase (P < 0.05) in the expression of the rrs genes and in the number of viable cells during log phase growth (8, 12, and 16 h) in the strains with configuration F in comparison to strains with one or two rrn operons that did not have ISs. A high prevalence of IS elements within or close to the M. bovis rrn operon-promoter region may reflect their important role in regulation of both ribosome synthesis and function. IMPORTANCE: Data presented in this study show a high prevalence of diverse ISs within the M. bovis rrn locus resulting in intraspecies variability and diversity. Such abundance of IS elements near or within the rrn locus may offer a selective advantage to M. bovis Moreover, the fact that expression of the rrs genes as well as the number of viable cells increased in the group of strains with IS element insertion within a putative promoter -35 sequence (configuration F) in comparison to that in strains with one or two rrn operons that do not have ISs may serve as a basis for understanding the possible role of M. bovis IS elements in fundamental biological processes such as regulation of ribosome synthesis and function.


Subject(s)
Mutagenesis, Insertional , Mycoplasma bovis/genetics , rRNA Operon , DNA Transposable Elements , DNA, Bacterial/genetics , DNA, Intergenic , Genome, Bacterial , Mycoplasma bovis/growth & development , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction , Transcription Initiation Site
19.
Mol Microbiol ; 91(1): 39-56, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24164596

ABSTRACT

DNA replication in Escherichia coli is normally initiated at a single origin, oriC, dependent on initiation protein DnaA. However, replication can be initiated elsewhere on the chromosome at multiple ectopic oriK sites. Genetic evidence indicates that initiation from oriK depends on RNA-DNA hybrids (R-loops), which are normally removed by enzymes such as RNase HI to prevent oriK from misfiring during normal growth. Initiation from oriK sites occurs in RNase HI-deficient mutants, and possibly in wild-type cells under certain unusual conditions. Despite previous work, the locations of oriK and their impact on genome stability remain unclear. We combined 2D gel electrophoresis and whole genome approaches to map genome-wide oriK locations. The DNA copy number profiles of various RNase HI-deficient strains contained multiple peaks, often in consistent locations, identifying candidate oriK sites. Removal of RNase HI protein also leads to global alterations of replication fork migration patterns, often opposite to normal replication directions, and presumably eukaryote-like replication fork merging. Our results have implications for genome stability, offering a new understanding of how RNase HI deficiency results in R-loop-mediated transcription-replication conflict, as well as inappropriate replication stalling or blockage at Ter sites outside of the terminus trap region and at ribosomal operons.


Subject(s)
Chromosomes, Bacterial/metabolism , DNA Replication , DNA, Bacterial/chemistry , Escherichia coli/genetics , Replication Origin , Ribonuclease H/genetics , DNA, Bacterial/genetics , Electrophoresis, Gel, Two-Dimensional , Escherichia coli/enzymology , Genome, Bacterial , Genomic Instability , High-Throughput Nucleotide Sequencing , Hydroxyurea/pharmacology , Mutation , Ribonuclease H/metabolism , Transcription, Genetic , rRNA Operon
20.
Biophys J ; 106(1): 55-64, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24411237

ABSTRACT

Previous electron-microscopic imaging has shown high RNA polymerase occupation densities in the 16S and 23S encoding regions and low occupation densities in the noncoding leader, spacer, and trailer regions of the rRNA (rrn) operons in E. coli. This indicates slower transcript elongation within the coding regions and faster elongation within the noncoding regions of the operon. Inactivation of four of the seven rrn operons increases the transcript initiation frequency at the promoters of the three intact operons and reduces the time for RNA polymerase to traverse the operon. We have used the DNA sequence-dependent standard free energy variation of the transcription complex to model the experimentally observed changes in the elongation rate along the rrnB operon. We also model the stimulation of the average transcription rate over the whole operon by increasing rate of transcript initiation. Monte Carlo simulations, taking into account initiation of transcription, translocation, and backward and forward tracking of RNA polymerase, partially reproduce the observed transcript elongation rate variations along the rrn operon and fully account for the increased average rate in response to increased frequency of transcript initiation.


Subject(s)
Escherichia coli/genetics , Models, Biological , Thermodynamics , Transcription Elongation, Genetic , rRNA Operon , Escherichia coli/chemistry , Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL