RESUMEN
Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.
Asunto(s)
Enfermedades Raras , Ratones , Animales , Humanos , Ratones Noqueados , Enfermedades Raras/genética , Técnicas de Inactivación de Genes , FenotipoRESUMEN
Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a "barren" regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions.
Asunto(s)
Bienestar del Animal/ética , Ambiente Controlado , Comportamiento de Nidificación/fisiología , Bienestar del Animal/economía , Animales , Metabolismo Energético/fisiología , Femenino , Pruebas de Función Cardíaca/métodos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Nocicepción/fisiologíaRESUMEN
The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.
Asunto(s)
Ratones Endogámicos/genética , Fenotipo , Animales , Ratones de Colaboración Cruzada/genética , Bases de Datos Genéticas , Femenino , Estudios de Asociación Genética , Genotipo , Masculino , Ratones , Sitios de Carácter Cuantitativo , Especificidad de la EspecieRESUMEN
The alternative oxidase, AOX, provides a by-pass of the cytochrome segment of the mitochondrial respiratory chain when the chain is unavailable. AOX is absent from mammals, but AOX from Ciona intestinalis is benign when expressed in mice. Although non-protonmotive, so does not contribute directly to ATP production, it has been shown to modify and in some cases rescue phenotypes of respiratory-chain disease models. Here we studied the effect of C. intestinalis AOX on mice engineered to express a disease-equivalent mutant of Uqcrh, encoding the hinge subunit of mitochondrial respiratory complex III, which results in a complex metabolic phenotype beginning at 4-5 weeks, rapidly progressing to lethality within a further 6-7 weeks. AOX expression delayed the onset of this phenotype by several weeks, but provided no long-term benefit. We discuss the significance of this finding in light of the known and hypothesized effects of AOX on metabolism, redox homeostasis, oxidative stress and cell signaling. Although not a panacea, the ability of AOX to mitigate disease onset and progression means it could be useful in treatment.
Asunto(s)
Complejo III de Transporte de Electrones , Mitocondrias , Animales , Ratones , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Membranas Mitocondriales/metabolismo , Fenotipo , Factores de Transcripción/metabolismo , Mamíferos/metabolismoRESUMEN
Clinical presentation of congenital heart disease is heterogeneous, making identification of the disease-causing genes and their genetic pathways and mechanisms of action challenging. By using in vivo electrocardiography, transthoracic echocardiography and microcomputed tomography imaging to screen 3,894 single-gene-null mouse lines for structural and functional cardiac abnormalities, here we identify 705 lines with cardiac arrhythmia, myocardial hypertrophy and/or ventricular dilation. Among these 705 genes, 486 have not been previously associated with cardiac dysfunction in humans, and some of them represent variants of unknown relevance (VUR). Mice with mutations in Casz1, Dnajc18, Pde4dip, Rnf38 or Tmem161b genes show developmental cardiac structural abnormalities, with their human orthologs being categorized as VUR. Using UK Biobank data, we validate the importance of the DNAJC18 gene for cardiac homeostasis by showing that its loss of function is associated with altered left ventricular systolic function. Our results identify hundreds of previously unappreciated genes with potential function in congenital heart disease and suggest causal function of five VUR in congenital heart disease.
RESUMEN
BACKGROUND: Generation and phenotyping of mutant mouse models continues to increase along with the search for the most efficient phenotyping tests. Here we asked if a combination of different locomotor tests is necessary for comprehensive locomotor phenotyping, or if a large data set from an automated gait analysis with the CatWalk system would suffice. NEW METHOD: First we endeavored to meaningfully reduce the large CatWalk data set by Principal Component Analysis (PCA) to decide on the most relevant parameters. We analyzed the influence of sex, body weight, genetic background and age. Then a combination of different locomotor tests was analyzed to investigate the possibility of redundancy between tests. RESULT: The extracted 10 components describe 80% of the total variance in the CatWalk, characterizing different aspects of gait. With these, effects of CatWalk version, sex, body weight, age and genetic background were detected. In addition, the PCA on a combination of locomotor tests suggests that these are independent without significant redundancy in their locomotor measures. COMPARISON WITH EXISTING METHODS: The PCA has permitted the refinement of the highly dimensional CatWalk (and other tests) data set for the extraction of individual component scores and subsequent analysis. CONCLUSION: The outcome of the PCA suggests the possibility to focus on measures of the front and hind paws, and one measure of coordination in future experiments to detect phenotypic differences. Furthermore, although the CatWalk is sensitive for detecting locomotor phenotypes pertaining to gait, it is necessary to include other tests for comprehensive locomotor phenotyping.
Asunto(s)
Conducta Animal/fisiología , Investigación Conductal/métodos , Análisis de la Marcha/métodos , Locomoción/fisiología , Animales , Femenino , Genotipo , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Análisis de Componente PrincipalRESUMEN
The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.