Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(2): 163-172, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643263

RESUMEN

Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologs of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury.


Asunto(s)
Fibrosis Pulmonar Idiopática/inmunología , Pulmón/patología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Animales , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Bleomicina/inmunología , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/inmunología , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/citología , Pulmón/inmunología , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Análisis de Secuencia de ARN/métodos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Análisis de la Célula Individual/métodos , Regulación hacia Arriba
2.
Nature ; 614(7947): 318-325, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599978

RESUMEN

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.


Asunto(s)
Linfocitos T CD4-Positivos , Regulación Viral de la Expresión Génica , Infecciones por VIH , VIH-1 , Latencia del Virus , Humanos , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN Viral/aislamiento & purificación , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , VIH-1/aislamiento & purificación , VIH-1/patogenicidad , Memoria Inmunológica , Microfluídica , Necroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico
3.
Nature ; 614(7947): 326-333, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599367

RESUMEN

Multiple sclerosis is a chronic inflammatory disease of the central nervous system1. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis2,3. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes. Here, to address these challenges, we developed focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), a high-throughput microfluidic cytometry method that combines encapsulation of cells in droplets, PCR-based detection of target nucleic acids and droplet sorting to enable in-depth transcriptomic analyses of cells of interest at single-cell resolution. We applied FIND-seq to study the regulation of astrocytes characterized by the splicing-driven activation of the transcription factor XBP1, which promotes disease pathology in multiple sclerosis and experimental autoimmune encephalomyelitis4. Using FIND-seq in combination with conditional-knockout mice, in vivo CRISPR-Cas9-driven genetic perturbation studies and bulk and single-cell RNA sequencing analyses of samples from mouse experimental autoimmune encephalomyelitis and humans with multiple sclerosis, we identified a new role for the nuclear receptor NR3C2 and its corepressor NCOR2 in limiting XBP1-driven pathogenic astrocyte responses. In summary, we used FIND-seq to identify a therapeutically targetable mechanism that limits XBP1-driven pathogenic astrocyte responses. FIND-seq enables the investigation of previously inaccessible cells, including rare cell subsets defined by unique gene expression signatures or other nucleic acid markers.


Asunto(s)
Astrocitos , Encefalomielitis Autoinmune Experimental , Microfluídica , Esclerosis Múltiple , Ácidos Nucleicos , Análisis de Expresión Génica de una Sola Célula , Animales , Humanos , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Regulación de la Expresión Génica , Ratones Noqueados , Esclerosis Múltiple/patología , Microfluídica/métodos , Análisis de Expresión Génica de una Sola Célula/métodos , Ácidos Nucleicos/análisis , Edición Génica
4.
Nature ; 587(7834): 477-482, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116311

RESUMEN

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Asunto(s)
Células Clonales/patología , Análisis Mutacional de ADN , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Análisis de la Célula Individual , Separación Celular , Células Clonales/metabolismo , Humanos , Inmunofenotipificación
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074872

RESUMEN

Cell-cell interactions are important to numerous biological systems, including tissue microenvironments, the immune system, and cancer. However, current methods for studying cell combinations and interactions are limited in scalability, allowing just hundreds to thousands of multicell assays per experiment; this limited throughput makes it difficult to characterize interactions at biologically relevant scales. Here, we describe a paradigm in cell interaction profiling that allows accurate grouping of cells and characterization of their interactions for tens to hundreds of thousands of combinations. Our approach leverages high-throughput droplet microfluidics to construct multicellular combinations in a deterministic process that allows inclusion of programmed reagent mixtures and beads. The combination droplets are compatible with common manipulation and measurement techniques, including imaging, barcode-based genomics, and sorting. We demonstrate the approach by using it to enrich for chimeric antigen receptor (CAR)-T cells that activate upon incubation with target cells, a bottleneck in the therapeutic T cell engineering pipeline. The speed and control of our approach should enable valuable cell interaction studies.


Asunto(s)
Bioensayo/métodos , Comunicación Celular/fisiología , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Animales , Comunicación Celular/genética , Genómica/métodos , Humanos
6.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723045

RESUMEN

The randomization and screening of combinatorial DNA libraries is a powerful technique for understanding sequence-function relationships and optimizing biosynthetic pathways. Although it can be difficult to predict a priori which sequence combinations encode functional units, it is often possible to omit undesired combinations that inflate library size and screening effort. However, defined library generation is difficult when a complex scan through sequence space is needed. To overcome this challenge, we designed a hybrid valve- and droplet-based microfluidic system that deterministically assembles DNA parts in picoliter droplets, reducing reagent consumption and bias. Using this system, we built a combinatorial library encoding an engineered histidine kinase (HK) based on bacterial CpxA. Our library encodes designed transmembrane (TM) domains that modulate the activity of the cytoplasmic domain of CpxA and variants of the structurally distant "S helix" located near the catalytic domain. We find that the S helix sets a basal activity further modulated by the TM domain. Surprisingly, we also find that a given TM motif can elicit opposing effects on the catalytic activity of different S-helix variants. We conclude that the intervening HAMP domain passively transmits signals and shapes the signaling response depending on subtle changes in neighboring domains. This flexibility engenders a richness in functional outputs as HKs vary in response to changing evolutionary pressures.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/química , ADN/metabolismo , Microfluídica , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Activación Enzimática , Expresión Génica , Biblioteca de Genes , Microfluídica/instrumentación , Microfluídica/métodos , Modelos Moleculares , Conformación Molecular , Ingeniería de Proteínas/métodos , Proteínas Quinasas/genética , Relación Estructura-Actividad
7.
Anal Chem ; 94(21): 7475-7482, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35578791

RESUMEN

Current methods for fabricating microparticles offer limited control over size and shape. Here, we demonstrate a droplet microfluidic method to form polyhedral microparticles with controlled concavity. By manipulating Laplace pressure, buoyancy, and particle rheology, we generate microparticles with diverse shapes and curvatures. Additionally, we demonstrate the particles provide increased capture efficiency when used for particle-templated emulsification. Our approach enables microparticles with enhanced chemical and biological functionality.


Asunto(s)
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Tamaño de la Partícula , Reología
8.
Nucleic Acids Res ; 48(8): e48, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32095820

RESUMEN

Microbial biosynthetic gene clusters are a valuable source of bioactive molecules. However, because they typically represent a small fraction of genomic material in most metagenomic samples, it remains challenging to deeply sequence them. We present an approach to isolate and sequence gene clusters in metagenomic samples using microfluidic automated plasmid library enrichment. Our approach provides deep coverage of the target gene cluster, facilitating reassembly. We demonstrate the approach by isolating and sequencing type I polyketide synthase gene clusters from an Antarctic soil metagenome. Our method promotes the discovery of functional-related genes and biosynthetic pathways.


Asunto(s)
Vías Biosintéticas/genética , Metagenómica/métodos , Técnicas Analíticas Microfluídicas , Biblioteca Genómica , Dispositivos Laboratorio en un Chip , Plásmidos/genética , Sintasas Poliquetidas/genética , Microbiología del Suelo , Flujo de Trabajo
9.
Anal Chem ; 93(20): 7422-7429, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33971091

RESUMEN

Targeted sequencing enables sensitive and cost-effective analysis by focusing resources on molecules of interest. Existing methods, however, are limited in enrichment power and target capture length. Here, we present a novel method that uses compound nucleic acid cytometry to achieve million-fold enrichments of molecules >10 kbp in length using minimal prior target information. We demonstrate the approach by sequencing HIV proviruses in infected individuals. Our method is useful for rare target sequencing in research and clinical applications, including for identifying cancer-associated mutations or sequencing viruses infecting cells.


Asunto(s)
Ácidos Nucleicos , Virus , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ácidos Nucleicos/genética , Provirus , Análisis de Secuencia de ADN , Virus/genética
10.
Anal Chem ; 93(29): 9974-9979, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34252272

RESUMEN

Droplet digital PCR provides superior accuracy for nucleic acid quantitation. The requirement of microfluidics to generate and analyze the emulsions, however, is a barrier to its adoption, particularly in low resource settings or clinical laboratories. Here, we report a novel method to prepare ddPCR droplets by vortexing and readout of the results by bulk analysis of recovered amplicons. We demonstrate the approach by accurately quantitating SARS-CoV-2 sequences using entirely bulk processing and no microfluidics. Our approach for quantitating reactions should extend to all digital assays that generate amplicons, including digital PCR and LAMP conducted in droplets, microchambers, or nanoliter wells. More broadly, our approach combines important attributes of ddPCR, including enhanced accuracy and robustness to inhibition, with the high-volume sample processing ability of quantitative PCR.

11.
Anal Chem ; 92(21): 14616-14623, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33049138

RESUMEN

Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the analysis and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to physically isolate subsets of interest prior to analysis; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymatic reactions without having to physically isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biology, combinatorial chemical synthesis, and drug screening.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Fluorescencia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
12.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33250685

RESUMEN

Injectable colloids that self-assemble into three-dimensional networks are promising materials for applications in regenerative engineering, as they create open systems for cellular infiltration, interaction, and activation. However, most injectable colloids have spherical morphologies, which lack the high material-biology contact areas afforded by higher aspect ratio materials. To address this need, injectable high aspect ratio particles (HARPs) were developed that form three-dimensional networks to enhance scaffold assembly dynamics and cellular interactions. HARPs were functionalized for tunable surface charge through layer-by-layer electrostatic assembly. Positively charged Chitosan-HARPs had improved particle suspension dynamics when compared to spherical particles or negatively charged HARPs. Chit-HARPs were used to improve the suspension dynamics and viability of MIN6 cells in three-dimensional networks. When combined with negatively charged gelatin microsphere (GelMS) porogens, Chit-HARPs reduced GelMS sedimentation and increased overall network suspension, due to a combination of HARP network formation and electrostatic interactions. Lastly, HARPs were functionalized with fibroblast growth factor 2 (FGF2) to highlight their use for growth factor delivery. FGF2-HARPs increased fibroblast proliferation through a combination of 3D scaffold assembly and growth factor delivery. Taken together, these studies demonstrate the development and diverse uses of high aspect ratio particles as tunable injectable scaffolds for applications in regenerative engineering.

13.
Proc Natl Acad Sci U S A ; 114(33): 8728-8733, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760972

RESUMEN

Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Bioensayo/métodos , Recuento de Células/métodos , Línea Celular Tumoral , Humanos , Impresión/métodos
14.
Langmuir ; 35(42): 13671-13680, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31603340

RESUMEN

The production of atomically defined, uniform, large-area 2D materials remains as a challenge in materials chemistry. Many methods to produce 2D nanomaterials suffer from limited lateral film dimensions, lack of film uniformity, or limited chemical diversity. These issues have hindered the application of these materials to sensing applications, which require large-area uniform films to achieve reliable and consistent signals. Furthermore, the development of a 2D material system that is biocompatible and readily chemically tunable has been a fundamental challenge. Here, we report a simple, robust method for the production of large-area, uniform, and highly tunable monolayer and bilayer films, from sequence-defined peptoid polymers, and their application as highly selective molecular recognition elements in sensor production. Monolayers and bilayer films were produced on the centimeter scale using Langmuir-Blodgett methods and exhibited a high degree of uniformity and ordering as evidenced by atomic force microscopy, electron diffraction, and grazing incidence X-ray scattering. We further demonstrated the utility of these films in sensing applications by employing the biolayer interferometry technique to detect the specific binding of the pathogen derived proteins, shiga toxin and anthrax protective antigen, to peptoid-coated sensors.

15.
Anal Chem ; 90(2): 1273-1279, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29256243

RESUMEN

Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Análisis de la Célula Individual/instrumentación , Diseño de Equipo , Expresión Génica , Humanos , Células Jurkat , Células MCF-7
16.
Anal Chem ; 90(16): 9813-9820, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30033717

RESUMEN

The compartmentalization of reactions in monodispersed droplets is valuable for applications across biology. However, the requirement of microfluidics to partition the sample into monodispersed droplets is a significant barrier that impedes implementation. Here, we introduce particle-templated emulsification, a method to encapsulate samples in monodispersed emulsions without microfluidics. By vortexing a mixture of hydrogel particles and sample solution, we encapsulate the sample in monodispersed emulsions that are useful for most droplet applications. We illustrate the method with ddPCR and single cell culture. The ability to encapsulate samples in monodispersed droplets without microfluidics should facilitate the implementation of compartmentalized reactions in biology.


Asunto(s)
Biología/métodos , Emulsiones/química , Hidrogeles/química , Técnicas de Cultivo de Célula/métodos , ADN/análisis , Reacción en Cadena de la Polimerasa Multiplex/métodos , Saccharomyces cerevisiae/aislamiento & purificación
17.
Metab Eng ; 47: 346-356, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29698778

RESUMEN

Evolutionary approaches to strain engineering inherently require the identification of suitable selection techniques for the product and phenotype of interest. In this work, we undertake a comparative analysis of two related but functionally distinct methods of high-throughput screening: traditional single cell fluorescence activated cell sorting (single cell FACS) and microdroplet-enabled FACS (droplet FACS) using water/oil/water (w/o/w) emulsions. To do so, we first engineer and evolve the non-conventional yeast Yarrowia lipolytica for high extracellular production of riboflavin (vitamin B2), an innately fluorescent product. Following mutagenesis and adaptive evolution, a direct parity-matched comparison of these two selection strategies was conducted. Both single cell FACS and droplet FACS led to significant increases in total riboflavin titer (32 and 54 fold relative to the parental PO1f strain, respectively). However, single cell FACS favored intracellular riboflavin accumulation (with only 70% of total riboflavin secreted) compared with droplet FACS that favored extracellular product accumulation (with 90% of total riboflavin secreted). We find that for the test case of riboflavin, the extent of secretion and total production were highly correlated. The resulting differences in production modes and levels clearly demonstrate the significant impact that selection approaches can exert on final evolutionary outcomes in strain engineering. Moreover, we note that these results provide a cautionary tale when intracellular read-outs of product concentration (including signals from biosensors) are used as surrogates for total production of potentially secreted products. In this regard, these results demonstrate that extracellular production is best assayed through an encapsulation technique when performing high throughput screening.


Asunto(s)
Citometría de Flujo , Riboflavina , Yarrowia , Evolución Molecular Dirigida/métodos , Mutagénesis , Riboflavina/biosíntesis , Riboflavina/genética , Yarrowia/citología , Yarrowia/genética , Yarrowia/metabolismo
18.
Nat Chem Biol ; 17(11): 1119-1120, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34504323
19.
Nucleic Acids Res ; 44(7): e66, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26704978

RESUMEN

Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de Secuencia de ADN/métodos , Escherichia coli/genética , Técnicas Analíticas Microfluídicas , Análisis de la Célula Individual
20.
Proc Natl Acad Sci U S A ; 112(23): 7159-64, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26040002

RESUMEN

Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Técnicas Analíticas Microfluídicas , Mutación , Glicósido Hidrolasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA