Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 147(5): 1887-1898, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38193360

RESUMEN

RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V ß = -1.06, P < 0.001; lobules VI-VII ß = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.


Asunto(s)
Edad de Inicio , Proteína de Replicación C , Humanos , Masculino , Femenino , Proteína de Replicación C/genética , Adulto , Expansión de las Repeticiones de ADN/genética , Persona de Mediana Edad , Adulto Joven , Adolescente , Niño , Fenotipo , Índice de Severidad de la Enfermedad , Preescolar , Progresión de la Enfermedad
2.
J Cell Mol Med ; 28(9): e18293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722298

RESUMEN

Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Animales , Humanos , Mutación , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinámicas Mitocondriales/genética
3.
Neurobiol Dis ; 193: 106467, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452947

RESUMEN

Mutations in the gene encoding MFN2 have been identified as associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a broad clinical phenotype involving the entire nervous system. MFN2, a dynamin-like GTPase protein located on the outer mitochondrial membrane, is well-known for its involvement in mitochondrial fusion. Numerous studies have demonstrated its participation in a network crucial for various other mitochondrial functions, including mitophagy, axonal transport, and its controversial role in endoplasmic reticulum (ER)-mitochondria contacts. Considerable progress has been made in the last three decades in elucidating the disease pathogenesis, aided by the generation of animal and cellular models that have been instrumental in studying disease physiology. A review of the literature reveals that, up to now, no definitive pharmacological treatment for any CMT2A variant has been established; nonetheless, recent years have witnessed substantial progress. Many treatment approaches, especially concerning molecular therapy, such as histone deacetylase inhibitors, peptide therapy to increase mitochondrial fusion, the new therapeutic strategies based on MF1/MF2 balance, and SARM1 inhibitors, are currently in preclinical testing. The literature on gene silencing and gene replacement therapies is still limited, except for a recent study by Rizzo et al.(Rizzo et al., 2023), which recently first achieved encouraging results in in vitro and in vivo models of the disease. The near-future goal for these promising therapies is to progress to the stage of clinical translation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Fenotipo , Proteínas Mitocondriales/metabolismo , Mutación
4.
Mov Disord ; 39(1): 209-214, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38054570

RESUMEN

BACKGROUND: Biallelic intronic AAGGG repeat expansions in the replication factor complex subunit 1 (RFC1) gene were identified as the leading cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Patients exhibit significant clinical heterogeneity and variable disease course, but no potential biomarker has been identified to date. OBJECTIVES: In this multicenter cross-sectional study, we aimed to evaluate neurofilament light (NfL) chain serum levels in a cohort of RFC1 disease patients and to correlate NfL serum concentrations with clinical phenotype and disease severity. METHODS: Sixty-one patients with genetically confirmed RFC1 disease and 48 healthy controls (HCs) were enrolled from six neurological centers. Serum NfL concentration was measured using the single molecule array assay technique. RESULTS: Serum NfL concentration was significantly higher in patients with RFC1 disease compared to age- and-sex-matched HCs (P < 0.0001). NfL level showed a moderate correlation with age in both HCs (r = 0.4353, P = 0.0020) and patients (r = 0.4092, P = 0.0011). Mean NfL concentration appeared to be significantly higher in patients with cerebellar involvement compared to patients without cerebellar dysfunction (27.88 vs. 21.84 pg/mL, P = 0.0081). The association between cerebellar involvement and NfL remained significant after controlling for age and sex (ß = 0.260, P = 0.034). CONCLUSIONS: Serum NfL levels are significantly higher in patients with RFC1 disease compared to HCs and correlate with cerebellar involvement. Longitudinal studies are warranted to assess its change over time.


Asunto(s)
Filamentos Intermedios , Humanos , Estudios Transversales , Estudios Longitudinales , Fenotipo , Biomarcadores
5.
Brain ; 146(12): 5060-5069, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450567

RESUMEN

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing data from nearly 10 000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat. We identified three novel repeat motifs, AGGGC (n = 6 from five families), AAGGC (n = 2 from one family) and AGAGG (n = 1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, we revealed a pathogenic role for large AAAGG repeat configuration expansions (n = 5). Long-read sequencing was used to characterize the entire repeat sequence, and six patients exhibited a pure AGGGC expansion, while the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs appeared to have arisen from a common haplotype and were predicted to form highly stable G quadruplexes, which have previously been demonstrated to affect gene transcription in other conditions. The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions when the AAAGG motif is very large (>500 repeats) or the AAGGG motif is interrupted. Accurate sizing and full sequencing of the satellite repeat with long-read sequencing is recommended in clinically selected cases to enable accurate molecular diagnosis and counsel patients and their families.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Síndrome , Enfermedades Vestibulares , Humanos , Vestibulopatía Bilateral , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética
6.
Cell Mol Life Sci ; 80(8): 241, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543540

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.


Asunto(s)
Multiómica , Atrofia Muscular Espinal , Humanos , Estudios Retrospectivos , Estudios de Seguimiento , Proteoma , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo
7.
Cell Mol Life Sci ; 80(12): 373, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007410

RESUMEN

Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Interferencia de ARN , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mutación , Hidrolasas/genética , Ratones Transgénicos
8.
Cell Mol Life Sci ; 79(7): 374, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727341

RESUMEN

Myostatin is a negative regulator of skeletal muscle growth secreted by skeletal myocytes. In the past years, myostatin inhibition sparked interest among the scientific community for its potential to enhance muscle growth and to reduce, or even prevent, muscle atrophy. These characteristics make it a promising target for the treatment of muscle atrophy in motor neuron diseases, namely, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), which are rare neurological diseases, whereby the degeneration of motor neurons leads to progressive muscle loss and paralysis. These diseases carry a huge burden of morbidity and mortality but, despite this unfavorable scenario, several therapeutic advancements have been made in the past years. Indeed, a number of different curative therapies for SMA have been approved, leading to a revolution in the life expectancy and outcomes of SMA patients. Similarly, tofersen, an antisense oligonucleotide, is now undergoing clinical trial phase for use in ALS patients carrying the SOD1 mutation. However, these therapies are not able to completely halt or reverse progression of muscle damage. Recently, a trial evaluating apitegromab, a myostatin inhibitor, in SMA patients was started, following positive results from preclinical studies. In this context, myostatin inhibition could represent a useful strategy to tackle motor symptoms in these patients. The aim of this review is to describe the myostatin pathway and its role in motor neuron diseases, and to summarize and critically discuss preclinical and clinical studies of myostatin inhibitors in SMA and ALS. Then, we will highlight promises and pitfalls related to the use of myostatin inhibitors in the human setting, to aid the scientific community in the development of future clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Miostatina/genética , Miostatina/metabolismo , Miostatina/uso terapéutico , Transducción de Señal
9.
Muscle Nerve ; 64(4): 474-482, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34296433

RESUMEN

INTRODUCTION: /AIMS: Patients with neuromuscular disorders (NMDs), including many elderly, immunosuppressed, and disabled individuals, may have been particularly affected during the coronavirus disease 2019 (COVID-19) pandemic in Lombardy, a COVID-19 high-incidence area between February and May 2020. We aimed to evaluate the effects of the COVID-19 pandemic on the quality of life (QoL) and perceived disease burden of this group of patients. METHODS: We conducted a cross-sectional phone-based survey study between June 1 and June 14, 2020, on a sample of 240 NMD patients followed at our clinic in Milan, Italy. We asked about perceived NMD burden and QoL before and during the COVID-19 pandemic. We collected responses on access to outpatient care and ancillary services. We investigated the presence of symptoms suggestive of COVID-19 infection and confirmed cases. RESULTS: We collected 205 responses: 53 patients (25.9%) reported a subjective worsening of the underlying NMD. QoL measures showed a significant worsening between pre and pandemic time frames (odds ratio, 2.14 95%; confidence interval, 1.82-2.51). Outpatient visits were postponed in more than half of cases (57.1%), with 104 patients (50.7%) experiencing a cancellation of scheduled diagnostic tests. 79 patients (38.5%) reported at least one symptom attributable to COVID-19 infection. Among the 10 patients tested with nasopharyngeal swabs, 6 tested positive and 3 died from respiratory failure, including 2 patients on corticosteroid/ immunosuppressive therapy. DISCUSSION: The COVID-19 pandemic affected QoL and limited access to outpatient care and ancillary services of NMD patients in Lombardy between February and May 2020.


Asunto(s)
COVID-19/epidemiología , COVID-19/psicología , Enfermedades Neuromusculares/epidemiología , Enfermedades Neuromusculares/psicología , Calidad de Vida/psicología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , Estudios Transversales , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Enfermedades Neuromusculares/diagnóstico , Encuestas y Cuestionarios
10.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502539

RESUMEN

Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.


Asunto(s)
Diferenciación Celular/fisiología , Descubrimiento de Drogas/métodos , Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/fisiología , Células Musculares/fisiología , Distrofias Musculares/terapia , Animales , Distrofina/genética , Distrofina/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Musculares/citología , Distrofias Musculares/genética , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia
11.
J Cell Mol Med ; 24(5): 3034-3039, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32032473

RESUMEN

The antisense oligonucleotide Nusinersen has been recently licensed to treat spinal muscular atrophy (SMA). Since SMA type 3 is characterized by variable phenotype and milder progression, biomarkers of early treatment response are urgently needed. We investigated the cerebrospinal fluid (CSF) concentration of neurofilaments in SMA type 3 patients treated with Nusinersen as a potential biomarker of treatment efficacy. The concentration of phosphorylated neurofilaments heavy chain (pNfH) and light chain (NfL) in the CSF of SMA type 3 patients was evaluated before and after six months since the first Nusinersen administration, performed with commercially available enzyme-linked immunosorbent assay (ELISA) kits. Clinical evaluation of SMA patients was performed with standardized motor function scales. Baseline neurofilament levels in patients were comparable to controls, but significantly decreased after six months of treatment, while motor functions were only marginally ameliorated. No significant correlation was observed between the change in motor functions and that of neurofilaments over time. The reduction of neurofilament levels suggests a possible early biochemical effect of treatment on axonal degeneration, which may precede changes in motor performance. Our study mandates further investigations to assess neurofilaments as a marker of treatment response.


Asunto(s)
Proteínas de Neurofilamentos/líquido cefalorraquídeo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos/administración & dosificación , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Adolescente , Adulto , Edad de Inicio , Anciano , Biomarcadores/líquido cefalorraquídeo , Preescolar , Femenino , Humanos , Filamentos Intermedios/metabolismo , Masculino , Persona de Mediana Edad , Oligonucleótidos/efectos adversos , Oligonucleótidos Antisentido/efectos adversos , Atrofias Musculares Espinales de la Infancia/líquido cefalorraquídeo , Atrofias Musculares Espinales de la Infancia/patología , Resultado del Tratamiento
12.
Neurobiol Dis ; 140: 104870, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32294521

RESUMEN

Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.


Asunto(s)
Atrofia Muscular Espinal/patología , Neuroglía/patología , Animales , Astrocitos/metabolismo , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Terapia Genética , Humanos , Ratones , Neuronas Motoras/patología , Neuroglía/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Tionucleótidos/uso terapéutico
13.
Transpl Infect Dis ; 22(1): e13236, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31868290

RESUMEN

In this case report, we describe the first PCR-confirmed case of HSV2 myeloradiculitis with a purely motor presentation, occurring in a 68-year-old liver transplant recipient. The patient reported ascending weakness with no sensory nor sphincteric symptoms, thereby resembling acute demyelinating inflammatory neuropathy, or Guillain-Barré syndrome. HSV2 was detected in cerebrospinal fluid by PCR, and the patient was successfully treated with intravenous Acyclovir.


Asunto(s)
Síndrome de Guillain-Barré/virología , Herpes Simple/líquido cefalorraquídeo , Trasplante de Hígado/efectos adversos , Aciclovir/uso terapéutico , Anciano , Antivirales/uso terapéutico , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 2 , Humanos , Masculino , Resultado del Tratamiento
14.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354178

RESUMEN

Neurodegenerative diseases are disabling and fatal neurological disorders that currently lack effective treatment. Neural stem cell (NSC) transplantation has been studied as a potential therapeutic approach and appears to exert a beneficial effect against neurodegeneration via different mechanisms, such as the production of neurotrophic factors, decreased neuroinflammation, enhanced neuronal plasticity and cell replacement. Thus, NSC transplantation may represent an effective therapeutic strategy. To exploit NSCs' potential, some of their essential biological characteristics must be thoroughly investigated, including the specific markers for NSC subpopulations, to allow profiling and selection. Another key feature is their secretome, which is responsible for the regulation of intercellular communication, neuroprotection, and immunomodulation. In addition, NSCs must properly migrate into the central nervous system (CNS) and integrate into host neuronal circuits, enhancing neuroplasticity. Understanding and modulating these aspects can allow us to further exploit the therapeutic potential of NSCs. Recent progress in gene editing and cellular engineering techniques has opened up the possibility of modifying NSCs to express select candidate molecules to further enhance their therapeutic effects. This review summarizes current knowledge regarding these aspects, promoting the development of stem cell therapies that could be applied safely and effectively in clinical settings.


Asunto(s)
Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/terapia , Animales , Humanos , Inmunomodulación , Factores de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/inmunología , Trasplante de Células Madre
15.
J Cell Mol Med ; 22(5): 2536-2546, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29502349

RESUMEN

Multiple system atrophy (MSA) is a rare neurodegenerative disease with a fatal outcome. Nowadays, only symptomatic treatment is available for MSA patients. The hallmarks of the disease are glial cytoplasmic inclusions (GCIs), proteinaceous aggregates mainly composed of alpha-synuclein, which accumulate in oligodendrocytes. However, despite the extensive research efforts, little is known about the pathogenesis of MSA. Early myelin dysfunction and alpha-synuclein deposition are thought to play a major role, but the origin of the aggregates and the causes of misfolding are obscure. One of the reasons for this is the lack of a reliable model of the disease. Recently, the development of induced pluripotent stem cell (iPSC) technology opened up the possibility of elucidating disease mechanisms in neurodegenerative diseases including MSA. Patient specific iPSC can be differentiated in glia and neurons, the cells involved in MSA, providing a useful human disease model. Here, we firstly review the progress made in MSA modelling with primary cell cultures. Subsequently, we focus on the first iPSC-based model of MSA, which showed that alpha-synuclein is expressed in oligodendrocyte progenitors, whereas its production decreases in mature oligodendrocytes. We then highlight the opportunities offered by iPSC in studying disease mechanisms and providing innovative models for testing therapeutic strategies, and we discuss the challenges connected with this technique.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Atrofia de Múltiples Sistemas/patología , Animales , Células Cultivadas , Humanos , Atrofia de Múltiples Sistemas/etiología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia
16.
Front Neurol ; 15: 1299205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895692

RESUMEN

Spinal Muscular Atrophy (SMA) is an inherited neuromuscular disorder characterized by progressive muscle weakness and atrophy, resulting from the degeneration of motor neurons in the spinal cord. A critical aspect of SMA is its impact on respiratory function. As the disease progresses, respiratory muscles, in particular intercostal muscles, become increasingly affected, leading to breathing difficulties and respiratory failure. Without intervention, many children with SMA type 1 die from respiratory failure before their second year of life. While assisted ventilation has improved survival, it often results in ventilator dependence. The development of new SMN-augmenting therapies has renewed optimism, but their long-term impact on respiratory function is uncertain, and non-invasive respiratory support remains an important part of SMA management. Despite the importance of respiratory support in SMA, knowledge regarding sleep disorders in this population is limited. This review aims to synthesize existing literature on sleep and sleep-related breathing disorders in patients with SMA, with a focus on SMA type 1. We summarize evidence of sleep-disordered breathing and respiratory failure in SMA, as well as outcomes and survival benefits associated with non-invasive or invasive ventilation with or without pharmacological therapies. We also discuss current knowledge regarding the effects of novel disease-modifying therapies for SMA on respiratory function and sleep. In conclusion, optimal care for children with SMA requires a multidisciplinary approach that includes neurology and respiratory specialists. This review highlights the importance of monitoring sleep and respiratory function in SMA, as well as the potential benefits and challenges associated with assisted ventilation combined with new therapies.

17.
Mol Neurobiol ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334812

RESUMEN

Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimentally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.

18.
Biomedicines ; 11(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37238925

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.

19.
Brain Sci ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38137127

RESUMEN

Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.

20.
Biomolecules ; 13(10)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37892228

RESUMEN

A recessive Short Tandem Repeat expansion in RFC1 has been found to be associated with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS), and to be a frequent cause of late onset ataxia and sensory neuropathy. The usual procedure for sizing these expansions is based on Southern Blotting (SB), a time-consuming and a relatively imprecise technique. In this paper, we compare SB with Optical Genome Mapping (OGM), a method for detecting Structural Variants (SVs) based on the measurement of distances between fluorescently labelled probes, for the diagnosis of RFC1 CANVAS and disease spectrum. The two methods are applied to 17 CANVAS patients' blood samples and resulting sizes compared, showing a good agreement. Further, long-read sequencing is used for two patients to investigate the agreement of sizes with either SB or OGM. Our study concludes that OGM represents a viable alternative to SB, allowing for a simpler technique, a more precise sizing of the expansion and ability to expand analysis of SV in the entire genome as opposed to SB which is a locus specific method.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Humanos , Ataxia Cerebelosa/complicaciones , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Vestibulopatía Bilateral/complicaciones , Vestibulopatía Bilateral/diagnóstico , Síndrome , Mapeo Cromosómico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA