Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 192(3): 1913-1927, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843134

RESUMEN

Chlorophyll degradation and anthocyanin biosynthesis, which often occur almost synchronously during fruit ripening, are crucial for vibrant coloration of fruits. However, the interlink point between their regulatory pathways remains largely unknown. Here, 2 litchi (Litchi chinensis Sonn.) cultivars with distinctively different coloration patterns during ripening, i.e. slow-reddening/stay-green "Feizixiao" (FZX) vs rapid-reddening/degreening "Nuomici" (NMC), were selected as the materials to study the key factors determining coloration. Litchi chinensis STAY-GREEN (LcSGR) was confirmed as the critical gene in pericarp chlorophyll loss and chloroplast breakdown during fruit ripening, as LcSGR directly interacted with pheophorbide a oxygenase (PAO), a key enzyme in chlorophyll degradation via the PAO pathway. Litchi chinensis no apical meristem (NAM), Arabidopsis transcription activation factor 1/2, and cup-shaped cotyledon 2 (LcNAC002) was identified as a positive regulator in the coloration of litchi pericarp. The expression of LcNAC002 was significantly higher in NMC than in FZX. Virus-induced gene silencing of LcNAC002 significantly decreased the expression of LcSGR as well as L. chinensis MYELOBLASTOSIS1 (LcMYB1), and inhibited chlorophyll loss and anthocyanin accumulation. A dual-luciferase reporter assay revealed that LcNAC002 significantly activates the expression of both LcSGR and LcMYB1. Furthermore, yeast-one-hybrid and electrophoretic mobility shift assay results showed that LcNAC002 directly binds to the promoters of LcSGR and LcMYB1. These findings suggest that LcNAC002 is an important ripening-related transcription factor that interlinks chlorophyll degradation and anthocyanin biosynthesis by coactivating the expression of both LcSGR and LcMYB1.


Asunto(s)
Antocianinas , Litchi , Antocianinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Litchi/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Clorofila/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Opt Express ; 32(8): 14770-14779, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859413

RESUMEN

We computationally and analytically investigate the plasmon near-field coupling phenomenon and the associated universal scaling behavior in a pair of coupled shifted-core coaxial nano-cavities. Each nano-cavity is composed of an InGaAsP gain medium sandwiched between a silver (Ag) core and an Ag shell. The evanescent coupling between the cavities lifts the degeneracy of the cut-off free transverse electromagnetic (TEM) like mode. The mode splitting of the supermodes is intensified by shifting the metal core position, which induces symmetry breaking. This coupling phenomenon is explained with spring-capacitor analogy and circuit analysis. The numerical simulation results reveal an exponential decay in the fractional plasmon wavelength relative to the ratio of gap distance and core shifting distance, which aligns with the plasmon ruler equation. In addition, by shifting the Ag cores in both cavities toward the center of the coupled structure, the electromagnetic field becomes strongly localized in nanoscale regions (hotspots) in the gain medium between the cavities, thus achieving extreme plasmonic nanofocusing. Utilizing this nanofocusing effect, we propose a refractive index sensor by placing a fluidic channel between the two cavities in close vicinity to the hotspots and reaching the highest sensitivity of ∼700nm/RIU.

3.
J Exp Bot ; 74(12): 3613-3629, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36928543

RESUMEN

In flowering plants, floral induction signals intersect at the shoot apex to modulate meristem determinacy and growth form. Here, we report a single-nucleus RNA sequence analysis of litchi apical buds at different developmental stages. A total of 41 641 nuclei expressing 21 402 genes were analyzed, revealing 35 cell clusters corresponding to 12 broad populations. We identify genes associated with floral transition and propose a model that profiles the key events associated with litchi floral meristem identity by analyzing 567 identified floral meristem cells at single cell resolution. Interestingly, single-nucleus RNA-sequencing data indicated that all putative FT and TFL1 genes were not expressed in bud nuclei, but significant expression was detected in bud samples by RT-PCR. Based on the expression patterns and gene silencing results, we highlight the critical role of LcTFL1-2 in inhibiting flowering and propose that the LcFT1/LcTFL1-2 expression ratio may determine the success of floral transition. In addition, the transport of LcFT1 and LcTFL1-2 mRNA from the leaf to the shoot apical meristem is proposed based on in situ and dot-blot hybridization results. These findings allow a more comprehensive understanding of the molecular events during the litchi floral transition, as well as the identification of new regulators.


Asunto(s)
Flores , Litchi , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hojas de la Planta/metabolismo , Análisis de Secuencia de ARN/métodos , Meristema , Regulación de la Expresión Génica de las Plantas
4.
Physiol Plant ; 175(3): e13914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37072650

RESUMEN

Hydrangea (Hydrangea arborescens var. "Annabelle") flowers are composed of sweet aroma sepals rather than true petals and can change color. Floral volatiles plays important roles in plants, such as attracting pollinators, defending against herbivores, and signaling. However, the biosynthesis and regulatory mechanisms underlying fragrance formation in H. arborescens during flower development remain unknown. In this study, a combination of metabolite profiling and RNA sequencing (RNA-seq) was employed to identify genes associated with floral scent biosynthesis mechanisms in "Annabelle" flowers at three developmental stages (F1, F2, and F3). The floral volatile data revealed that the "Annabelle" volatile profile includes a total of 33 volatile organic compounds (VOCs), and VOCs were abundant during the F2 stage of flower development, followed by the F1 and F3 stages, respectively. Terpenoids and benzenoids/phenylpropanoids were abundant during the F2 and F1 stages, with the latter being the most abundant, whereas fatty acid derivatives and other compounds were found in large amounts during the F3 stage. According to ultra-performance liquid chromatography-tandem mass spectrometer analysis, benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls play a significant role in the floral metabolite profile. The transcriptome data revealed a total of 17,461 differentially expressed genes (DEGs), with 7585, 12,795, and 9044 DEGs discovered between the F2 and F1, F3 and F1, and F2 and F3 stages, respectively. Several terpenoids and benzenoids/phenylpropanoids biosynthesis-related DEGs were identified, and GRAS/bHLH/MYB/AP2/WRKY were more abundant among transcription factors. Finally, DEGs interlinked with VOCs compounds were determined using Cytoscape and k-means analysis. Our results pave the way for the discovery of new genes, critical data for future genetic studies, and a platform for the metabolic engineering of genes involved in the production of Hydrangea's signature floral fragrance.


Asunto(s)
Hydrangea , Hydrangea/genética , Hydrangea/metabolismo , Odorantes , Perfilación de la Expresión Génica/métodos , Terpenos/metabolismo , Transcriptoma , Metaboloma , Flores/metabolismo
5.
Physiol Plant ; 175(1): e13860, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36683140

RESUMEN

Anthocyanins are health-promoting compounds with strong antioxidant properties that play important roles in disease prevention. Litchi chinensis Sonn. is a well-known and economically significant fruit due to its appealing appearance and nutritional value. The mature pericarp of litchi is rich in anthocyanins, whereas the aril (flesh) has an extremely low anthocyanin content. However, the mechanism of anthocyanin differential accumulation in litchi pericarp and aril remained unknown. Here, metabolome and transcriptome analysis were performed to unveil the cause of the deficiency of anthocyanin biosynthesis in litchi aril. Numerous anthocyanin biosynthesis-related metabolites and their derivatives were found in the aril, and the levels of rutin and (-)-epicatechin in the aril were comparable to those found in the pericarp, while anthocyanin levels were negligible. This suggests that the biosynthetic pathway from phenylalanine to cyanidin was present but that a block in cyanidin glycosylation could result in extremely low anthocyanin accumulation in the aril. Furthermore, 54 candidate genes were screened using weighted gene co-expression network analysis (WGCNA), and 9 genes (LcUFGT1, LcGST1, LcMYB1, LcSGR, LcCYP75B1, LcMATE, LcTPP, LcSWEET10, and LcERF61) might play a significant role in regulating anthocyanin biosynthesis. The dual-luciferase reporter (DLR) assay revealed that LcMYB1 strongly activated the promoters of LcUFGT1, LcGST4, and LcSWEET10. The results imply that LcMYB1 is the primary qualitative gene responsible for the deficiency of anthocyanin biosynthesis in litchi aril, which was confirmed by a transient transformation assay. Our findings shed light on the molecular mechanisms underlying tissue-specific anthocyanin accumulation and will help developing new red-fleshed litchi germplasm.


Asunto(s)
Antocianinas , Litchi , Antocianinas/metabolismo , Litchi/genética , Litchi/metabolismo , Frutas/genética , Perfilación de la Expresión Génica , Metaboloma , Transcriptoma , Regulación de la Expresión Génica de las Plantas
6.
Physiol Plant ; 174(6): e13840, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36512339

RESUMEN

Plant volatile organic compounds are the most abundant and structurally diverse plant secondary metabolites. They play a key role in plant lifespan via direct and indirect plant defenses, attracting pollinators, and mediating various interactions between plants and their environment. The ecological diversity and context-dependence of plant-plant communication driven by volatiles are crucial elements that influence plant performance in different habitats. Plant volatiles are also valued for their multiple applications in food, flavor, pharmaceutical, and cosmetics industries. In the current review, we summarize recent advances that have elucidated the functions of plant volatile organic compounds as mediators of plant interaction at community and individual levels, highlighting the complexities of plant receiver feedback to various signals and cues. This review emphasizes volatile terpenoids, the most abundant class of plant volatile organic compounds, highlighting their role in plant adaptability to global climate change and stress-response pathways that are integral to plant growth and survival. Finally, we identify research gaps and suggest future research directions.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Cambio Climático , Plantas/metabolismo , Aclimatación
7.
Physiol Plant ; 174(6): e13796, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36251666

RESUMEN

Volatile organic compounds (VOCs) are essential traits of flowers since they attract pollinators, aid in seed distribution, protect the plant from internal and external stimuli, and are involved in plant-plant and plant-environment interactions. Apart from their role in plants, VOCs are used in pharmaceuticals, fragrances, cosmetics, and flavorings. Litchi (Litchi chinensis Sonn.) is a popular fruit due to its enticing red appearance, exotic taste, and high nutritional qualities. Litchi flowers bloom as inflorescences primarily on the shoot terminals. There are three distinct flower types, two male and one female, all of which are produced on the same panicle and rely on insect pollination. Herein, we used a comprehensive metabolomic approach to examine the volatile profile of litchi fruit (green pericarp, yellow pericarp, and red pericarp) as well as male and female flowers (bud stage, half open and full bloom). From a quantitative examination of the volatiles in L. chinensis, a total of 19, 22, and 21 VOCs were discovered from female flowers, male flowers, and fruits, with the majority of them belonging to sesquiterpenes. Multivariate analysis revealed that the volatile profiles of fruits differ from those of male and female flowers. Three VOCs were unique to male flowers and ten to the fruit, while eight VOCs were shared by both male and female flowers and eleven by both male and female flowers and the fruit. Furthermore, for the first time, we identified and comprehensively studied the TERPENE SYNTHASE genes (TPS) using the litchi genome and transcriptome database, which revealed 38 TPS genes unevenly distributed across the 15 chromosomes. A phylogenetic study showed that LcTPS were grouped into TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g subfamilies, with TPS-b having the most genes. The conserved motifs (RRX8 W, NSE/DTE, and DDXX D) were studied in LcTPSs, and significant variation between subfamilies was discovered. Furthermore, after integrating the metabolome and transcriptome datasets, several VOCs were shown to be development-specific and highly linked with distinct LcTPS genes, making them promising biomarkers. Interestingly, LcTPS17/20/23/24/31 were associated with monoterpene edges, while the rest were connected to sesquiterpene edges, indicating their probable participation in the aroma biosynthesis mechanism of certain compounds.


Asunto(s)
Litchi , Sesquiterpenos , Litchi/genética , Odorantes , Filogenia , Perfilación de la Expresión Génica , Transcriptoma/genética , Metaboloma/genética
8.
Physiol Plant ; 174(3): e13721, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35598224

RESUMEN

Transcription factors (TFs) regulate gene expression to control certain genetic programs, such as growth and development, phytohormone regulation, and environmental stresses. 2-acetyl-1-pyrroline (2-AP) is the key element involved in aroma biosynthesis pathway, and the application of micronutrients can increase the 2-AP levels. However, little is known about the micronutrient-induced TFs involved in 2-AP biosynthesis. Here, we identify a number of TF families in two fragrant rice varieties, "Meixiangzhan-2" (M) and "Xiangyaxiangzhan" (X), in response to Zinc (Zn) application through transcriptomic analysis. A total of ~678 TFs were identified and grouped into 26 TF families, each of which was found to be involved in numerous signaling pathways. The WRKY TF family was found to be the most abundant, followed by bHLH and MYB. Furthermore, members of the WRKY, bHLH, MYB, ERF, HSF, MADS-box, NFY, and AP2 TF families were significantly upregulated and may be involved in the transcriptional regulation of aroma biosynthesis. In brief, this study enhances our understanding of the molecular mechanism of 2-AP biosynthesis and highlights the key TFs potentially involved in the production of aroma in fragrant rice.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Odorantes , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zinc/metabolismo
9.
Mol Biol Rep ; 49(6): 5459-5472, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35235158

RESUMEN

BACKGROUND: Fruit morphology traits are important commercial traits that directly affect the market value. However, studying the genetic basis of these traits in un-explored botanical groups is a fundamental objective for crop genetic improvement through marker-assisted breeding. METHODS AND RESULTS: In this study, a quantitative trait loci (QTLs) mapping strategy was used for dissecting the genomic regions of fruit linked morphological traits by single nucleotide polymorphism (SNP) based cleaved amplified polymorphism sequence (CAPS) molecular markers. Next-generation sequencing was done for the genomic sequencing of two contrasted melon lines (climacteric and non-climacteric), which revealed 97% and 96% of average coverage over the reference melon genome database, respectively. A total of 57.51% non-synonymous SNPs and 42.49% synonymous SNPs were found, which produced 149 sets of codominant markers with a 24% polymorphism rate. Total 138-F2 derived plant populations were genotyped for linkage mapping and composite interval mapping based QTL mapping exposed 6 genetic loci, positioned over distinct chromosomes (02, 04, 08, 09, and 12) between the flanking intervals of CAPS markers, which explained an unlinked polygenic architecture in genome. Three minor QTLs of fruit weight (FWt2.1, FWt4.1, FWt9.1), one major QTL of fruit firmness (FrFir8.1), one major QTL of fruit length (FL12.1), and one major QTL of fruit shape (FS12.1) were determined and collectively explained the phenotypic variance from 5.64 to 15.64%. Fruit phenotypic correlation exhibited the significant relationship and principal component analysis also identified the potential variability. Multiple sequence alignments also indicated the significant base-mutations in the detected genetic loci, respectively. CONCLUSION: In short, our illustrated genetic loci are expected to provide the reference insights for fine QTL mapping and candidate gene(s) mining through molecular genetic breeding approaches aimed at developing the new varieties.


Asunto(s)
Cucurbitaceae , Cucurbitaceae/genética , Frutas/genética , Ligamiento Genético , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
10.
Mol Biol Rep ; 49(6): 5405-5417, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35025033

RESUMEN

BACKGROUND: Strigolactones (SLs) are newly identified hormones and their biosynthesis is stimulated under phosphate deprivation and accomplished by the action of several enzymes, including the beta-carotene isomerase DWARF27 (D27). Expression of D27 is well renowned to respond to phosphate insufficiency. However, the identification and functional analysis of the carotenoid isomerase D27 genes are not elucidated in soybean. METHODS AND RESULTS: A total of six D27 genes were identified in the soybean genome and designated on the basis of chromosomal localization. According to the findings, these genes were irregularly distributed on chromosomes, and segmental repetition led to the expansion of the soybean GmD27 gene family. Based on a neighbor-joining phylogenetic tree, the predicted D27 proteins of soybean were divided into three clades. Based on RNA seq data analysis, GmD27 genes were differently expressed in various tissues but GmD27c was the highest. Therefore, GmD27c was chosen for the additional functional study due to its rather obvious transcription in nodulation and roots. RT-qPCR results showed that GmD27c was highly expressed in different nodule stages and in response to rhizobia infection. Functional characterization of GmD27c revealed that overexpression of GmD27c led to higher nodule number, while GmD27c knockdown caused fewer nodules compared to GUS control. Furthermore, GmD27c overexpressed and knockdown lines oppositely regulated the expression of numerous nodulation genes, which are vital for the development of nodules. CONCLUSION: This study not only discovered that SL biosynthesis and signaling pathway genes are conserved, but it also revealed that SL biosynthesis gene GmD27c and legume rhizobia have close interactions in controlling plant nodule number.


Asunto(s)
Glycine max , Rhizobium , Regulación de la Expresión Génica de las Plantas/genética , Compuestos Heterocíclicos con 3 Anillos , Lactonas , Fosfatos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
11.
Mol Biol Rep ; 49(6): 5265-5272, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34689282

RESUMEN

BACKGROUND: Guanosine monophosphate (GMP) synthetase is an enzyme that converts xanthosine monophosphate to GMP. GMP plays an essential role in plant development and responses to internal and external stimuli. It also plays a crucial role in several plant physiochemical processes, such as stomata closure, cation flux regulation, pathogen responses and chloroplast development. METHODS AND RESULTS: The mRNA sequences of NtGMP synthase in tobacco (Nicotiana tabacum) were rapidly amplified from cDNA. The GMP synthase open reading frame contains a 1617 bp sequence encoding 538 amino acids. A sequence analysis showed that this sequence shares high homology with that of Nicotiana sylvestris, Nicotiana attenuata, N. tomentosiformis, Solanum tuberosum, Lycopersicon pennellii, L. esculentum, Capsicum annuum, C. chinense and C. baccatum GMP synthase. A BLAST analysis with a tobacco high-throughput genomic sequence database revealed that the tobacco GMP synthase gene has five introns and six exons. A phylogenetic analysis showed a close genetic evolutionary relationship with N. sylvestris GMP synthase. The tissue-specific expression profile was evaluated using quantitative real-time PCR. The data showed that NtGMP synthase was highly expressed in leaves and moderately expressed in roots, flowers, and stems. The subcellular localization was predicted using the WOLF PSORT webserver, which strongly suggested that it might be localized to the cytoplasm. CONCLUSIONS: In the current study, we cloned and comprehensively characterized GMP synthase in tobacco (Nicotiana tabacum). Our results establish a basis for further research to explore the precise role of this enzyme in tobacco.


Asunto(s)
Guanosina Monofosfato , Nicotiana , Intrones , Ligasas/genética , Filogenia , Nicotiana/genética
12.
Mol Biol Rep ; 49(6): 5379-5387, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35149935

RESUMEN

BACKGROUND: 12-oxophytodienoic acid (OPDA) is a signaling molecule involved in defense and stress responses in plants. 12-oxophytodienoate reductase (OPR) is involved in the biosynthesis of jasmonic acid and trigger the conversion of OPDA into 3-oxo-2(2'[Z]-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0). METHODS AND RESULTS: Sequence analysis revealed that Nicotiana tabacum 12-oxophytodienoate reductase 1 (OPR1) and OPR2 encoded polypeptides of 375 and 349 amino acids with molecular masses of 41.67 and 39.04 kilodaltons (kDa), respectively, while the deduced protein sequences of NtOPR1 and NtOPR2 showed high homology with other 12-oxophytodienoate reductases. BLAST (Basic local alignment search tool) analysis revealed that both NtOPRs belong to the family of Old Yellow Enzymes (OYE), and analysis of genomic DNA structure indicated that both genes include 5 exons and 4 introns. Phylogenetic analysis using MEGA X showed that NtOPR1 and NtOPR2 shared a close evolutionary relationship with Nicotiana attenuata 12-oxophytodienoate reductases. In silico analysis of subcellular localization indicated the probable locations of NtOPR1 and NtOPR2 to be the cytoplasm and the peroxisome, respectively. Tissue-specific expression assays via qRT-PCR revealed that NtOPR1 and NtOPR2 genes were highly expressed in Nicotiana tabacum roots, temperately expressed in leaves and flowers, while low expression was observed in stem tissue. CONCLUSIONS: Presently, two 12-oxophytodienoate reductase genes (NtOPR1 and NtOPR2) were cloned and comprehensively characterized. Our findings provide comprehensive analyses that may guide future deep molecular studies of 12-oxophytodienoate reductases in Nicotiana tabacum.


Asunto(s)
Nicotiana , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Clonación Molecular , Ácidos Grasos Insaturados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Filogenia , Nicotiana/genética , Nicotiana/metabolismo
13.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077425

RESUMEN

Malate dehydrogenase, which facilitates the reversible conversion of malate to oxaloacetate, is essential for energy balance, plant growth, and cold and salt tolerance. However, the genome-wide study of the MDH family has not yet been carried out in tomato (Solanum lycopersicum L.). In this study, 12 MDH genes were identified from the S. lycopersicum genome and renamed according to their chromosomal location. The tomato MDH genes were split into five groups based on phylogenetic analysis and the genes that clustered together showed similar lengths, and structures, and conserved motifs in the encoded proteins. From the 12 tomato MDH genes on the chromosomes, three pairs of segmental duplication events involving four genes were found. Each pair of genes had a Ka/Ks ratio < 1, indicating that the MDH gene family of tomato was purified during evolution. Gene expression analysis exhibited that tomato MDHs were differentially expressed in different tissues, at various stages of fruit development, and differentially regulated in response to abiotic stresses. Molecular docking of four highly expressed MDHs revealed their substrate and co-factor specificity in the reversible conversion process of malate to oxaloacetate. Further, co-localization of tomato MDH genes with quantitative trait loci (QTL) of salt stress-related phenotypes revealed their broader functions in salt stress tolerance. This study lays the foundation for functional analysis of MDH genes and genetic improvement in tomato.


Asunto(s)
Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Solanum lycopersicum/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Simulación del Acoplamiento Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
14.
Plant Cell Rep ; 40(7): 1269-1284, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34052884

RESUMEN

KEY MESSAGE: Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3. Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. ß-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural ß-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of ß-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of ß-ocimene synthesis in H. coronarium.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Alquenos/metabolismo , Transferasas Alquil y Aril/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Zingiberaceae/genética , Transferasas Alquil y Aril/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , MicroARNs , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Zingiberaceae/efectos de los fármacos , Zingiberaceae/metabolismo
15.
Molecules ; 26(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34500858

RESUMEN

Floral fragrance is one of the most important characteristics of ornamental plants and plays a pivotal role in plant lifespan such as pollinator attraction, pest repelling, and protection against abiotic and biotic stresses. However, the precise determination of floral fragrance is limited. In the present study, the floral volatile compounds of six Hedychium accessions exhibiting from faint to highly fragrant were comparatively analyzed via gas chromatography-mass spectrometry (GC-MS) and Electronic nose (E-nose). A total of 42 volatile compounds were identified through GC-MS analysis, including monoterpenoids (18 compounds), sesquiterpenoids (12), benzenoids/phenylpropanoids (8), fatty acid derivatives (2), and others (2). In Hedychium coronarium 'ZS', H. forrestii 'Gaoling', H. 'Jin', H. 'Caixia', and H. 'Zhaoxia', monoterpenoids were abundant, while sesquiterpenoids were found in large quantities in H. coccineum 'KMH'. Hierarchical clustering analysis (HCA) divided the 42 volatile compounds into four different groups (I, II, III, IV), and Spearman correlation analysis showed these compounds to have different degrees of correlation. The E-nose was able to group the different accessions in the principal component analysis (PCA) corresponding to scent intensity. Furthermore, the pattern-recognition findings confirmed that the E-nose data validated the GC-MS results. The partial least squares (PLS) analysis between floral volatile compounds and sensors suggested that specific sensors were highly sensitive to terpenoids. In short, the E-nose is proficient in discriminating Hedychium accessions of different volatile profiles in both quantitative and qualitative aspects, offering an accurate and rapid reference technique for future applications.


Asunto(s)
Flores/química , Odorantes/análisis , Perfumes/química , Extractos Vegetales/análisis , Compuestos Orgánicos Volátiles/química , Zingiberaceae/química , Monoterpenos Ciclohexánicos/análisis , Nariz Electrónica , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/análisis , Análisis de Componente Principal , Sesquiterpenos/análisis , Microextracción en Fase Sólida , Terpenos/análisis
16.
Med J Islam Repub Iran ; 35: 17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996668

RESUMEN

COVID-19 is a novel highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Immunosuppressed people are at a higher risk for unfavourable outcomes if infected with SARS-CoV-2, as cellular immunity plays a key role in determining the course and outcome in COVID-19. Kidney transplant recipients (KTRs) are thus a distinct subset of the population. We describe our early experience with 2 KTRs requiring hospital admission due to COVID-19 and who recovered well. We conclude that timely intervention in the form of modifying immunosuppression and close monitoring and institution of further measures based on clinical severity is needed in KTRs with COVID-19.

17.
Med J Islam Repub Iran ; 35: 150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35321362

RESUMEN

Background: Acute kidney injury (AKI) is frequent in hospitalized patients with critical illness and presents in up to one-quarter of patients with non-severe community-acquired pneumonia (CAP), resulting in increased short and long-term mortality. There is a paucity of literature from resource-limited settings regarding the incidence and risk factors for AKI in patients with CAP. In this study, we looked at the incidence and risk factors for AKI in patients hospitalized with CAP in a resource-limited setting Methods: This prospective observational study conducted over 1 year period included patients ≥ 18 years of age diagnosed with CAP admitted to a tertiary care center. The differences in baseline characteristics between hospitalized CAP patients with and without AKI; and risk factors for AKI and the need for renal replacement therapy (RRT) were analyzed using Chi-square test, t-test, Mann-Whitney U test, and logistic regression with p-value <0.05 considered statistically significant. Results: We observed 27.6 % (58/210) of patients had AKI in our study. Patients with AKI had significantly higher baseline comorbidities of chronic kidney disease (p=0.005) and coronary artery disease (p=0.032), and significantly higher uric acid (p=0.002), lower albumin (p=0.005), lower total protein (p=0.015), higher bilirubin (p=0.001), higher LDH (p=0.041), and higher CURB-65 score (p<0.001) in addition to elevated creatinine, BUN (p<0.001) compared to the no-AKI group. The patient group requiring RRT had significantly more males (p=0.019), with significantly higher phosphorus (p=0.038), lower ALT (p=0.022), and expectedly higher creatinine (p<0.001) and blood urea nitrogen (p=0.016). The adjusted logistic regression analysis revealed that patients with higher CURB-65 scores were at increased odds of undergoing RRT (OR 8.74, 95% CI 5.27 to 12.21, p=0.039). Conclusion: There is a high incidence of AKI in patients hospitalized for CAP in developing countries. Clinicians should be alert for the prevention and early detection of AKI in CAP patients.

18.
Int J Phytoremediation ; 22(2): 111-126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31686525

RESUMEN

Biochar is the low-cost and environmental-friendly material which has shown a great potential for separation of heavy metals from water. The previous studies have established a superior role of biochar over other materials, such as activated carbon and inorganic sorbents (iron based) in efficient removal of toxic heavy metals from aqueous systems. Among the various factors influencing heavy metals sorption ability of biochar, types of feedstock/biomass and pyrolysis temperature play a significant role. The goal of this review is to increase our understanding of heavy metals sorption behavior by biochars - this is important as heavy metals sorption is driven based on biochar type, heavy metals species which involve numerous mechanisms, including the physical binding, complexation, ion exchange, surface precipitation and electrostatic interactions. In addition, this review paper describes various approaches to improve heavy metal sorption capacity of biochars by steam and acids/bases activations and impregnation of biochar-based composites with minerals, organic compounds and carbon-rich materials. The physical/chemical activation of biochars can improve the surface area, thus leading to their improved functionality, while modification/pretreatment methods help in synthesizing composites using biochar as a supporting media to develop new sorbents with efficient surface attributes for heavy metals removal from aqueous solutions.


Asunto(s)
Carbón Orgánico , Metales Pesados , Adsorción , Biodegradación Ambiental , Agua
19.
J Environ Manage ; 268: 110319, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32510455

RESUMEN

Literature related to the carbon cycle and climate contains contradictory results with regard to whether agricultural practices increase or mitigate emission of greenhouse gases (GHGs). One opinion is that anthropogenic activities have distinct carbon footprints - measured as total emissions of GHGs resulting from an activity, in this case, "agricultural operations". In contrast, it is argued that agriculture potentially serves to mitigate GHGs emissions when the best management practices are implemented. We review the literature on agricultural carbon footprints in the context of agricultural practices including soil, water and nutrient management. It has been reported that the management practices that enhance soil organic carbon (SOC) in arid and semi-arid areas include conversion of conventional tillage practices to conservation tillage approaches. We found that agricultural management in arid and semi-arid regions, which have specific characteristics related to high temperatures and low rainfall conditions, requires different practices for maintenance and restoration of SOC and for control of soil erosion compared to those used in Mediterranean, tropical regions. We recommend that in order to meet the global climate targets, quantification of net global warming potential of agricultural practices requires precise estimates of local, regional and global carbon budgets. We have conducted and present a case study for observing the development of deep soil carbon profile resulting from a 10-year wheat-cotton and wheat-maize rotation on semi-arid lands. Results showed that no tillage with mulch application had 14% (37.2 vs 43.3 Mg ha-1) higher SOC stocks in comparison to conventional tillage with mulch application. By implementing no tillage in conjunction with mulch application, lower carbon losses from soil can mitigate the risks associated with global warming. Therefore, it is necessary to reconsider agricultural practices and soil erosion after a land-use change when calculating global carbon footprints.


Asunto(s)
Carbono , Suelo , Agricultura , Ciclo del Carbono , Zea mays
20.
J Environ Manage ; 264: 110254, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32364955

RESUMEN

Soils contain one of the largest carbon (C) pools in the biosphere with the greatest potential of C sequestration to mitigate climate change impacts. The present study aimed at comparing C sequestration potential of various land use systems including forestlands, croplands, agroforests, and orchards in the arid region of Pakistan. Soil samples from the layers of 0-20, 20-40, 40-60, and 60-80 cm depths were collected and analysed for soil physico-chemical properties namely texture, pH, EC, NPK-soil, organic matter (SOM), and soil organic C (SOC). Additionally, the above and below ground plant biomass and C contents were estimated. Results revealed that the highest C sequestration potential (64.54 Mg ha-1) was in the above ground biomass of forest land and the lowest (33.50 Mg ha-1) in cropland. The below ground plant biomass at 0-20 cm soil depth was 14.09, 12.38, 11.78, 11.76, and 10.92 Mg ha-1 for forest land, mango orchards, agroforests, citrus orchards and cropland, respectively. The respective values in case of total C content were, 6.84, 6.79, 6.10, 5.69 Mg ha-1. Irrespective to the soil depth, below ground biomass and total C followed the order: forest land > mango orchard > citrus orchard > agroforests > crop lands. It is concluded that the forest land have greater potential for C sequestration than the other land use systems studied in the arid region of Pakistan. Therefore, in order to cope up with climate change disasters in Pakistan the massive reforestation project - named the Billion Tree Tsunami of the Government of Pakistan will prove beneficial.


Asunto(s)
Secuestro de Carbono , Suelo , Agricultura , Carbono , China , Bosques , Pakistán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA