Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 1): 118457, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382666

RESUMEN

Because of their high electrocatalytic activity, sensitivity, selectivity, and long-term stability in electrochemical sensors and biosensors, numerous nanomaterials are being used as suitable electrode materials thanks to developments in nanotechnology. Electrochemical sensors and biosensors are two areas where two-dimensional layered materials (2DLMs) are finding increasing utility due to their unusual structure and physicochemical features. Nanosensors, by their unprecedented sensitivity and minute scale, can probe deeper into the structural integrity of piles, capturing intricacies that traditional tools overlook. These advanced devices detect anomalies, voids, and minute defects in the pile structure with unparalleled granularity. Their effectiveness lies in detection and their capacity to provide real-time feedback on pile health, heralding a shift from reactive to proactive maintenance methodologies. Harvesting data from these nanosensors, data was incorporated into a probabilistic model, executing the reliability index calculations through Monte Carlo simulations. Preliminary outcomes show a commendable enhancement in the predictability of vertical bearing capacity, with the coefficient of variation dwindling by up to 12%. The introduction of nanosensors facilitates instantaneous monitoring and fortifies the long-term stability of pile foundations. This study accentuates the transformative potential of nanosensors in geotechnical engineering.


Asunto(s)
Nanotecnología , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Método de Montecarlo , Materiales de Construcción/análisis , Nanoestructuras
2.
Environ Res ; 258: 119248, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823615

RESUMEN

To ensure the structural integrity of concrete and prevent unanticipated fracturing, real-time monitoring of early-age concrete's strength development is essential, mainly through advanced techniques such as nano-enhanced sensors. The piezoelectric-based electro-mechanical impedance (EMI) method with nano-enhanced sensors is emerging as a practical solution for such monitoring requirements. This study presents a strength estimation method based on Non-Destructive Testing (NDT) Techniques and Long Short-Term Memory (LSTM) and artificial neural networks (ANNs) as hybrid (NDT-LSTMs-ANN), including several types of concrete strength-related agents. Input data includes water-to-cement rate, temperature, curing time, and maturity based on interior temperature, allowing experimentally monitoring the development of concrete strength from the early steps of hydration and casting to the last stages of hardening 28 days after the casting. The study investigated the impact of various factors on concrete strength development, utilizing a cutting-edge approach that combines traditional models with nano-enhanced piezoelectric sensors and NDT-LSTMs-ANN enhanced with nanotechnology. The results demonstrate that the hybrid provides highly accurate concrete strength estimation for construction safety and efficiency. Adopting the piezoelectric-based EMI technique with these advanced sensors offers a viable and effective monitoring solution, presenting a significant leap forward for the construction industry's structural health monitoring practices.

3.
Heliyon ; 10(10): e31244, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818169

RESUMEN

Universities and colleges play a pivotal role in the pursuit of a future that is sustainable through their pedagogical efforts and the execution of state-of-the-art research endeavors aimed at mitigating the effects of climate change. Higher Education Institutions (HEIs) serve as crucial catalysts in advancing sustainable development. HEIs are increasingly embracing precise measures to reduce their carbon footprint (CF) while also educating students on global sustainability. These nano-methods provide a quantitative framework for assessing a campus's sustainability efforts in line with Green Campus (GC) initiatives to lower carbon emissions align with GC goals. This study employs K-means clustering to analyze the integration of green and low-carbon principles in higher education political and ideological studies. Its goal is to identify patterns, assess teaching effectiveness, and improve sustainability education, aligning with Green Campus initiatives to enhance institutional contributions to sustainable growth through informed pedagogical strategies. Input data includes curriculum content, teaching methods, student engagement, and institutional goals related to sustainability. Seeking to improve sustainability education align with Green Campus initiatives, higher education can strategically enhance their contributions to long-term sustainability and growth through effective pedagogical approaches. Cluster 3 has the lowest WCSS value of 1200, indicating tighter cohesion and less variability within this cluster compared to Cluster 1 (1500) and Cluster 2 (1800). Cluster 3 stands out with the highest silhouette score of 0.7, suggesting well-defined and distinct clusters, while Cluster 2 has the lowest score of 0.4, indicating some overlap or ambiguity in data points. Cluster 1 has the lowest Davies-Bouldin Index of 0.4, implying better separation between clusters compared to Cluster 2 (0.6) and Cluster 3 (0.5). Cluster 3 is well-defined and cohesive, showing strong integration of green practices. Cluster 1 displays good separation and cohesion, while Cluster 2 requires refinement due to potential overlap in sustainability integration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA