Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(4): 1205-1215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418578

RESUMEN

The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.


Asunto(s)
Discapacidad Intelectual , Receptores de Glutamato Metabotrópico , Transducción de Señal , Sinapsis , Humanos , Discapacidad Intelectual/genética , Masculino , Sinapsis/metabolismo , Sinapsis/genética , Femenino , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/genética , Homocigoto , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/genética , Linaje , Adulto , Paraplejía/genética , Paraplejía/metabolismo , Animales , Niño , Neuronas/metabolismo , Adolescente , Células HEK293 , Mutación/genética
2.
Genet Med ; 26(4): 101068, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38193396

RESUMEN

PURPOSE: Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS: Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS: 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION: Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.


Asunto(s)
Genotipo , Humanos , Fenotipo , Mutación , Homocigoto , Estudios de Asociación Genética
3.
Brain ; 146(11): 4547-4561, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37459438

RESUMEN

SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.


Asunto(s)
Convulsiones , Simportadores de Sodio-Bicarbonato , Niño , Ratones , Humanos , Animales , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Convulsiones/genética , Mutación/genética , Neurotransmisores , Ácido gamma-Aminobutírico/genética , Mamíferos/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo
4.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456968

RESUMEN

Cytochrome c oxidase (COX), a multimeric protein complex, is the final electron acceptor in the mitochondrial electron transfer chain. Primary COX deficiency, caused by mutations in either mitochondrial DNA or nuclear-encoded genes, is a heterogenous group of mitochondrial diseases with a wide range of presentations, ranging from fatal infantile to subtler. We previously reported a patient with primary COX deficiency due to a pathogenic variant in COX4I1 (encoding the common isoform of COX subunit 4, COX4-1), who presented with bone marrow failure, genomic instability, and short stature, mimicking Fanconi anemia (FA). In the present study, we demonstrated that accumulative DNA damage coincided primarily with proliferative cells in the patient's fibroblasts and in COX4i1 knockdown cells. Expression analysis implicated a reduction in DNA damage response pathways, which was verified by demonstrating impaired recovery from genotoxic insult and decreased DNA repair. The premature senescence of the COX4-1-deficient cells prevented us from undertaking additional studies; nevertheless, taken together, our results indicate replicative stress and impaired nuclear DNA damage response in COX4-1 deficiency. Interestingly, our in vitro findings recapitulated the patient's presentation and present status.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa , Enfermedades Mitocondriales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos
5.
Clin Genet ; 99(4): 577-582, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33410501

RESUMEN

Calpainopathies constitute a heterogeneous group of disorders resulting from deficiencies in calpains, calcium-specific proteases that modulate substrates by limited proteolysis. Clinical manifestations depend on tissue-specific expression of the defective calpain and substrate specificity. CAPN15, encoding the Drosophila small optic lobes (sol) homolog, was recently found to cause various eye defects in individuals carrying bi-allelic missense variants. Here we report on two siblings with manifestations reminiscent of Johanson-Blizzard syndrome including failure to thrive, microcephaly, global developmental delay, dysmorphic features, endocrine abnormalities and congenital malformations, in addition to eye abnormalities. Exome sequencing identified a homozygous 47 base-pair deletion in a minimal intron of CAPN15, including the splice donor site. Sequencing of cDNA revealed single exon skipping, resulting in an out-of-frame deletion with a predicted premature termination codon. These findings expand the phenotypic spectrum associated with CAPN15 variants, and suggest that complete loss-of-function is associated with a recognizable syndrome of congenital malformations and developmental delay, overlapping Johanson-Blizzard syndrome and the recently observed brain defects in Capn15 knockout (KO) mice. Moreover, the data highlight the unique opportunity for indel detection in minimal introns.


Asunto(s)
Anomalías Múltiples/genética , Calpaína/genética , Discapacidades del Desarrollo/genética , Mutación INDEL , Alelos , Ano Imperforado/genética , Emparejamiento Base , Codón sin Sentido , Consanguinidad , Displasia Ectodérmica/genética , Anomalías del Ojo/genética , Estudios de Asociación Genética , Trastornos del Crecimiento/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Hipotiroidismo/genética , Discapacidad Intelectual/genética , Intrones/genética , Masculino , Microftalmía/genética , Hipotonía Muscular/genética , Nariz/anomalías , Enfermedades Pancreáticas/genética , Linaje , Sitios de Empalme de ARN/genética , Eliminación de Secuencia , Esteatorrea/genética
6.
Am J Med Genet A ; 185(4): 1033-1038, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33438832

RESUMEN

Aldosterone synthase deficiency (ASD) is a rare potentially life-threatening genetic disorder that usually presents during infancy due to pathogenic variants in the CYP11B2 gene. Knowledge about CYP11B2 variants in the Arab population is scarce. Here, we present and analyze five Palestinian patients and their different novel pathogenic variants. Data on clinical presentation, electrolytes, plasma renin activity, and steroid hormone levels of five patients diagnosed with ASD were summarized. Sequencing of the CYP11B2 gene exons was followed by evolutionary conservation analysis and structural modeling of the variants. All patients were from highly consanguineous Palestinian families. The patients presented at 1-4 months of age with recurrent vomiting, poor weight gain, hyponatremia, hyperkalemia, and low aldosterone levels. Genetic analysis of the CYP11B2 gene revealed three homozygous pathogenic variants: p.Ser344Profs*9, p.G452W in two patients from an extended family, and p.Q338stop. A previously described pathogenic variant was found in one patient: p.G288S. We described four different CYP11B2 gene pathogenic variants in a relatively small population. Our findings may contribute to the future early diagnosis and therapy for patients with ASD among Arab patients who present with failure to thrive and compatible electrolyte disturbances.


Asunto(s)
Citocromo P-450 CYP11B2/genética , Vómitos/genética , Aldosterona/sangre , Árabes/genética , Citocromo P-450 CYP11B2/sangre , Femenino , Heterogeneidad Genética , Humanos , Hiperpotasemia/epidemiología , Hiperpotasemia/genética , Hiperpotasemia/patología , Hiponatremia/epidemiología , Hiponatremia/genética , Hiponatremia/patología , Lactante , Recién Nacido , Masculino , Vómitos/epidemiología , Vómitos/patología , Aumento de Peso/genética , Aumento de Peso/fisiología
7.
Am J Hum Genet ; 100(4): 676-688, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28343629

RESUMEN

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease.


Asunto(s)
Anomalías Múltiples/genética , Endopeptidasas/genética , Discapacidad Intelectual/genética , Adolescente , Animales , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Linaje , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Convulsiones/genética
8.
Neurogenetics ; 20(4): 209-213, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31372774

RESUMEN

Regulation of neuronal connectivity and synaptic communication are key to proper functioning of the brain. The Netrin-G subfamily and their cognate receptors are vertebrate-specific synaptic cell adhesion molecules with a role in synapse establishment and function, which seem to have co-evolved to contribute to higher brain functions. We identified a homozygous frameshift variant in NTNG2 (NM_032536.3: c.376dup), encoding Netrin-G2, in eight individuals from four families with global developmental delay, hypotonia, secondary microcephaly, and autistic features. Comparison of haplotypes established this as a founder variant. Previous studies showed that Ntng2-knockout mice have impaired visual, auditory, and motor coordination abilities required for demanding tasks, as well as possible spatial learning and memory deficits. Knockout of Ntng2 in a cellular model resulted in short neurites, and knockout of its trans-synaptic partner Ngl2/Lrrc4 in mice revealed autistic-like behavior and reduced NMDAR synaptic plasticity. The Ngl2/Lrrc4-knockout mouse phenotype was rescued by NMDAR activation, suggesting a mechanistic link to autism spectrum disorder. We thus propose NTNG2 as a candidate disease gene and provide further support for the involvement of Netrin-G2 in neuropsychiatric phenotypes.


Asunto(s)
Trastorno Autístico/genética , Discapacidades del Desarrollo/genética , Mutación del Sistema de Lectura , Proteínas Ligadas a GPI/genética , Homocigoto , Hipotonía Muscular/genética , Netrinas/genética , Trastorno Autístico/complicaciones , Adhesión Celular , Moléculas de Adhesión Celular/genética , Niño , Discapacidades del Desarrollo/complicaciones , Exoma , Femenino , Haplotipos , Humanos , Masculino , Hipotonía Muscular/complicaciones , Plasticidad Neuronal , Linaje , Fenotipo , Sinapsis/metabolismo
9.
Hepatology ; 68(2): 590-598, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28898457

RESUMEN

Primary bile acid malabsorption is associated with congenital diarrhea, steatorrhea, and a block in the intestinal return of bile acids in the enterohepatic circulation. Mutations in the ileal apical sodium-dependent bile acid transporter (ASBT; SLC10A2) can cause primary bile acid malabsorption but do not appear to account for most familial cases. Another major transporter involved in the intestinal reclamation of bile acids is the heteromeric organic solute transporter alpha-beta (OSTα-OSTß; SLC51A-SLC51B), which exports bile acid across the basolateral membrane. Here we report the first patients with OSTß deficiency, clinically characterized by chronic diarrhea, severe fat soluble vitamin deficiency, and features of cholestatic liver disease including elevated serum gamma-glutamyltransferase activity. Whole exome sequencing revealed a homozygous single nucleotide deletion in codon 27 of SLC51B, resulting in a frameshift and premature termination at codon 50. Functional studies in transfected cells showed that the SLC51B mutation resulted in markedly reduced taurocholic acid uptake activity and reduced expression of the OSTα partner protein. CONCLUSION: The findings identify OSTß deficiency as a cause of congenital chronic diarrhea with features of cholestatic liver disease. These studies underscore OSTα-OSTß's key role in the enterohepatic circulation of bile acids in humans. (Hepatology 2017).


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis/etiología , Diarrea/etiología , Proteínas de Transporte de Membrana/deficiencia , Esteatorrea/genética , Ácidos y Sales Biliares/genética , Niño , Preescolar , Colestasis/genética , Diarrea/diagnóstico , Diarrea/genética , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Mutación , Linaje , Hermanos , Esteatorrea/diagnóstico , Secuenciación del Exoma
10.
J Med Genet ; 55(9): 599-606, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29764912

RESUMEN

OBJECTIVE: To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy. METHODS: Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast. RESULTS: Two brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10-65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids. CONCLUSION: PITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity.


Asunto(s)
Enfermedades Cerebelosas/genética , Cerebelo/patología , Mutación con Pérdida de Función , Metaloendopeptidasas/genética , Adolescente , Edad de Inicio , Árabes/genética , Atrofia , Enfermedades Cerebelosas/enzimología , Cerebelo/enzimología , Niño , Humanos , Masculino , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Linaje , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
11.
Hum Mol Genet ; 25(21): 4635-4648, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158450

RESUMEN

Mutation in a growing spectrum of genes is known to either cause or contribute to primary or secondary microcephaly. In primary microcephaly the genetic determinants frequently involve mutations that contribute to or modulate the microtubule cytoskeleton by causing perturbations of neuronal proliferation and migration. Here we describe four patients from two unrelated families each with an infantile neurodegenerative disorder characterized by loss of developmental milestones at 9­24 months of age followed by seizures, dystonia and acquired microcephaly. The patients harboured homozygous missense mutations (A475T and A586V) in TBCD, a gene encoding one of five tubulin-specific chaperones (termed TBCA-E) that function in concert as a nanomachine required for the de novo assembly of the α/ß tubulin heterodimer. The latter is the subunit from which microtubule polymers are assembled. We found a reduced intracellular abundance of TBCD in patient fibroblasts to about 10% (in the case of A475T) or 40% (in the case of A586V) compared to age-matched wild type controls. Functional analyses of the mutant proteins revealed a partially compromised ability to participate in the heterodimer assembly pathway. We show via in utero shRNA-mediated suppression that a balanced supply of tbcd is critical for cortical cell proliferation and radial migration in the developing mouse brain. We conclude that TBCD is a novel functional contributor to the mammalian cerebral cortex development, and that the pathological mechanism resulting from the mutations we describe is likely to involve compromised interactions with one or more TBCD-interacting effectors that influence the dynamics and behaviour of the neuronal cytoskeleton.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/genética , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Animales , Encéfalo/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Lactante , Recién Nacido , Ratones , Ratones Endogámicos C57BL/embriología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/fisiología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Secuenciación del Exoma/métodos
12.
J Med Genet ; 54(3): 196-201, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694521

RESUMEN

BACKGROUND: Of our 1400 exome-studied patients, 67% originate from consanguineous families. ∼80% suffer from variable degree of intellectual disability (ID). The search for disease causing genes using homozygosity mapping was progressing slowly until 2010, then markedly accelerated by the introduction of exome analysis. OBJECTIVES: To identify the disease causing mutation(s) in three patients from two unrelated families who suffered from global developmental delay, severe ID and drug-responsive seizure disorder. METHODS: Exome analysis was performed in DNA of the three patients. The identified PIGC variants were generated and transfected into PIGC-defective mouse cells and the restoration of the surface expression of mouse CD90, CD48 and FLAER was assessed using flow cytometry. The expression of these proteins was also studied on the surface of patients' leucocytes. RESULTS: Three PIGC mutations were identified; homozygous p.L189W in one family and compound heterozygosity for p.L212P/p.R21X variants in another. PIGC participates in the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor which tethers proteins to plasma membrane. In cells lacking PIGC protein, which were transfected with each of the PIGC variants, we detected a clear reduction of surface expression of GPI-anchored proteins. Furthermore, analyses of patients' leucocytes showed significant and constant decrease of CD16 surface expression in granulocytes, and moderate decrease of CD14, CD55, CD59 and FLAER levels. CONCLUSIONS: PIGC joins the list of genes in which mutations result in defective biosynthesis of GPI anchoring, manifesting by global developmental delay and seizure disorder. The lack of specific biomarker dictates exome sequencing as the diagnostic procedure of choice in similar patients.


Asunto(s)
Epilepsia/genética , Hexosiltransferasas/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Anomalías Múltiples , Secuencia de Aminoácidos/genética , Animales , Discapacidades del Desarrollo , Epilepsia/fisiopatología , Exoma/genética , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Ratones , Mutación , Linaje
13.
Neurogenetics ; 18(3): 135-139, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28493104

RESUMEN

Hypomyelinating leukodystrophies are a group of neurodevelopmental disorders that affect proper formation of the myelin sheath in the central nervous system. They are characterized by developmental delay, hypotonia, spasticity, and variable intellectual disability. We used whole exome analysis to study the molecular basis of hypomyelinating leukodystrophy in two sibs from a consanguineous family. A homozygous mutation, c.3068+5G>A, was identified in the ATRN gene, with the consequent insertion of an intronic sequence into the patients' cDNA and a predicted premature termination of the ATRN polypeptide. ATRN encodes Attractin, which was previously shown to play a critical role in central myelination. Several spontaneous ATRN rodent mutants exhibited impaired myelination which was attributed to oxidative stress and accelerated apoptosis. ATRN can now be added to the growing list of genes associated with hypomyelinating leukodystrophy. The disease seems to be confined to the CNS; however, given the young age of our patients, longer follow-up may be required.


Asunto(s)
Encéfalo/patología , Proteínas de la Membrana/genética , Mutación , Fibras Nerviosas Mielínicas/patología , Enfermedad de Pelizaeus-Merzbacher/genética , Femenino , Homocigoto , Humanos , Intrones , Masculino , Hipotonía Muscular/genética , Mutación/genética , Fenotipo
14.
Neurogenetics ; 17(4): 227-232, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27624574

RESUMEN

DNA repair mechanisms such as nucleotide excision repair (NER) and translesion synthesis (TLS) are dependent on proliferating cell nuclear antigen (PCNA), a DNA polymerase accessory protein. Recently, homozygosity for p.Ser228Ile mutation in the PCNA gene was reported in patients with neurodegeneration and impaired NER. Using exome sequencing, we identified a homozygous deleterious mutation, c.648delAG, in the PARP10 gene, in a patient suffering from severe developmental delay. In agreement, PARP10 protein was absent from the patient cells. We have previously shown that PARP10 is recruited by PCNA to DNA damage sites and is required for DNA damage resistance. The patient cells were significantly more sensitive to hydroxyurea and UV-induced DNA damage than control cells, resulting in increased apoptosis, indicating DNA repair impairment in the patient cells. PARP10 deficiency joins the long list of DNA repair defects associated with neurodegenerative disorders, including ataxia telangiectasia, xeroderma pigmentosum, Cockayne syndrome, and the recently reported PCNA mutation.


Asunto(s)
Daño del ADN , Reparación del ADN , Discapacidades del Desarrollo/genética , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/patología , Homocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Secuenciación del Exoma
15.
J Med Genet ; 52(8): 541-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041762

RESUMEN

BACKGROUND: L-serine plays an essential role in neuronal development and function. Although a non-essential amino acid, L-serine must be synthesised within the brain because of its poor permeability by the blood-brain barrier. Within the brain, its synthesis is confined to astrocytes, and its shuttle to neuronal cells is performed by a dedicated neutral amino acid transporter, ASCT1. METHODS AND RESULTS: Using exome analysis we identified the recessive mutations, p.E256K, p.L315fs, and p.R457W, in SLC1A4, the gene encoding ASCT1, in patients with developmental delay, microcephaly and hypomyelination; seizure disorder was variably present. When expressed in a heterologous system, the mutations did not affect the protein level at the plasma membrane but abolished or markedly reduced L-serine transport for p.R457W and p.E256K mutations, respectively. Interestingly, p.E256K mutation displayed a lower L-serine and alanine affinity but the same substrate selectivity as wild-type ASCT1. CONCLUSIONS: The clinical phenotype of ASCT1 deficiency is reminiscent of defects in L-serine biosynthesis. The data underscore that ASCT1 is essential in brain serine transport. The SLC1A4 p.E256K mutation has a carrier frequency of 0.7% in the Ashkenazi-Jewish population and should be added to the carrier screening panel in this community.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/genética , Discapacidades del Desarrollo/genética , Microcefalia/genética , Adolescente , Transporte Biológico/genética , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Tamización de Portadores Genéticos , Células HEK293 , Heterocigoto , Humanos , Masculino , Vaina de Mielina/metabolismo , Linaje , Serina/metabolismo
16.
Neurogenetics ; 16(3): 215-221, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25894286

RESUMEN

The composition of the neuronal cell surface dictates synaptic plasticity and thereby cognitive development. This remodeling of the synapses is governed by the endocytic network which internalize transmembrane proteins, then sort them back to the cell surface or carry them to the lysosome for degradation. The multi-protein retromer complex is central to this selection, capturing specific transmembrane proteins and remodeling the cell membrane to form isolated cargo-enriched transport carriers. We investigated a consanguineous family with four patients who presented in infancy with intractable myoclonic epilepsy and lack of psychomotor development. Using exome analysis, we identified a homozygous deleterious mutation in SNX27, which encodes sorting nexin 27, a retromer cargo adaptor. In western analysis of patient fibroblasts, the encoded mutant protein was expressed at an undetectable level when compared with a control sample. The patients' presentation and clinical course recapitulate that reported for the SNX27 knock-out mouse. Since the cargo proteins for SNX27-mediated sorting include subunits of ionotropic glutamate receptors and endosome-to-cell surface synaptic insertion of AMPA receptors is severely perturbed in SNX27(-/-) neurons, it is proposed that at least part of the neurological aberrations observed in the patients is attributed to defective sorting of ionotropic glutamate receptors. SNX27 deficiency is now added to the growing list of neurodegenerative disorders associated with retromer dysfunction.


Asunto(s)
Epilepsias Mioclónicas/genética , Enfermedades Neurodegenerativas/genética , Nexinas de Clasificación/deficiencia , Nexinas de Clasificación/genética , Encéfalo/patología , Encéfalo/fisiopatología , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Linaje
17.
J Clin Microbiol ; 51(9): 2926-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804390

RESUMEN

This study describes the course of an OXA-48-producing Enterobacteriaceae (OPE) outbreak that started in March 2012 in a neonatal intensive care unit (NICU) in Jerusalem, Israel. During the peak of the outbreak (January to August 2012), there were 49 patients who had proven or suspected acquisition of OPE in the NICU, including 16 with invasive infections, out of a total of 156 patients who were hospitalized during that period. Three children hospitalized in the pediatric ICU were identified as carriers of OPE. Three patients with a previous stay in the affected NICU were identified as OPE carriers upon admission to another hospital. The Ministry of Health was notified and then intervened in July 2012. Intervention included cohorting colonized patients, conducting frequent rectal-culture surveillance, and improving the implementation of infection control practices. As a result, the incidence of OPE acquisition declined to 5 cases in the first 4 months, followed by no new cases in the next 3 months. Thirty-one patient-unique isolates were available for analysis: 29 Klebsiella pneumoniae isolates, all belonging to a single clone (sequence type 39 [ST39]), and 2 isolates from Enterobacter cloacae. All isolates possessed the blaOXA-48 and blaCTX-M-14 genes, which are located on the same plasmid. This plasmid, similar to the global blaOXA-48-harboring vector, has now acquired blaCTX-M-14, leading to resistance to all ß-lactam agents.


Asunto(s)
Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Enterobacter cloacae/enzimología , Infecciones por Enterobacteriaceae/epidemiología , Klebsiella pneumoniae/enzimología , beta-Lactamasas/genética , Portador Sano/epidemiología , Portador Sano/microbiología , Infección Hospitalaria/microbiología , Enterobacter cloacae/clasificación , Enterobacter cloacae/genética , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/microbiología , Genotipo , Humanos , Recién Nacido , Control de Infecciones/métodos , Cuidado Intensivo Neonatal , Israel/epidemiología , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Epidemiología Molecular , Tipificación Molecular , Plásmidos , beta-Lactamasas/metabolismo
18.
Genome Biol ; 24(1): 216, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773136

RESUMEN

BACKGROUND: Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. RESULTS: We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial-temporal regulation of histone arginine methylation in specific brain regions. CONCLUSIONS: This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.


Asunto(s)
Cerebelo , Histonas , Proteínas Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Arginina/genética , Arginina/metabolismo , Atrofia , Histonas/metabolismo , Metilación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Cerebelo/patología
19.
Hum Mutat ; 33(8): 1261-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22539336

RESUMEN

Desbuquois dysplasia (DD) is characterized by antenatal and postnatal short stature, multiple dislocations, and advanced carpal ossification. Two forms have been distinguished on the basis of the presence (type 1) or the absence (type 2) of characteristic hand anomalies. We have identified mutations in calcium activated nucleotidase 1 gene (CANT1) in DD type 1. Recently, CANT1 mutations have been reported in the Kim variant of DD, characterized by short metacarpals and elongated phalanges. DD has overlapping features with spondyloepiphyseal dysplasia with congenital joint dislocations (SDCD) due to Carbohydrate (chondroitin 6) Sulfotransferase 3 (CHST3) mutations. We screened CANT1 and CHST3 in 38 DD cases (6 type 1 patients, 1 Kim variant, and 31 type 2 patients) and found CANT1 mutations in all DD type 1 cases, the Kim variant and in one atypical DD type 2 expanding the clinical spectrum of hand anomalies observed with CANT1 mutations. We also identified in one DD type 2 case CHST3 mutation supporting the phenotype overlap with SDCD. To further define function of CANT1, we studied proteoglycan synthesis in CANT1 mutated patient fibroblasts, and found significant reduced GAG synthesis in presence of ß-D-xyloside, suggesting that CANT1 plays a role in proteoglycan metabolism.


Asunto(s)
Nucleotidasas/metabolismo , Proteoglicanos/metabolismo , Células Cultivadas , Cromatografía en Gel , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Enanismo/genética , Enanismo/metabolismo , Glicósidos/metabolismo , Humanos , Inestabilidad de la Articulación/genética , Inestabilidad de la Articulación/metabolismo , Mutación , Nucleotidasas/genética , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Polidactilia/genética , Polidactilia/metabolismo , Sulfotransferasas , Carbohidrato Sulfotransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA