RESUMEN
BACKGROUND: The TNM system is used to assess prognosis after colorectal cancer (CRC) diagnosis. Other prognostic factors reported include histopathological assessments of the tumour, tumour mutations and proteins in the blood. As some of these factors are strongly correlated, it is important to evaluate the independent effects they may have on survival. METHODS: Tumour samples from 2162 CRC patients were visually assessed for amount of tumour stroma, severity of lymphocytic infiltrate at the tumour margins and the presence of lymphoid follicles. Somatic mutations in the tumour were assessed for 2134 individuals. Pre-surgical levels of 4963 plasma proteins were measured in 128 individuals. The associations between these features and prognosis were inspected by a Cox Proportional Hazards Model (CPH). RESULTS: Levels of stroma, lymphocytic infiltration and presence of lymphoid follicles all associate with prognosis, along with high tumour mutation burden, high microsatellite instability and TP53 and BRAF mutations. The somatic mutations are correlated with the histopathology and none of the somatic mutations associate with survival in a multivariate analysis. Amount of stroma and lymphocytic infiltration associate with local invasion of tumours. Elevated levels of two plasma proteins, CA-125 and PPP1R1A, associate with a worse prognosis. CONCLUSIONS: Tumour stroma and lymphocytic infiltration variables are strongly associated with prognosis of CRC and capture the prognostic effects of tumour mutation status. CA-125 and PPP1R1A may be useful prognostic biomarkers in CRC.
Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Pronóstico , Modelos de Riesgos Proporcionales , Inestabilidad de Microsatélites , Proteínas Proto-Oncogénicas B-raf/genética , MutaciónRESUMEN
The Society of Toxicologic Pathology's Scientific and Regulatory Policy Committee formed a working group to consider the present and future use of digital pathology in toxicologic pathology in general and specifically its use in primary evaluation and peer review in Good Laboratory Practice (GLP) environments. Digital histopathology systems can save costs by reducing travel, enhancing organizational flexibility, decreasing slide handling, improving collaboration, increasing access to historical images, and improving quality and efficiency through integration with laboratory information management systems. However, the resources to implement and operate a digital pathology system can be significant. Given the magnitude and risks involved in the decision to adopt digital histopathology, this working group used pertinent previously published survey results and its members' expertise to create a Points-to-Consider article to assist organizations with building and implementing digital pathology workflows. With the aim of providing a comprehensive perspective, the current publication summarizes aspects of digital whole-slide imaging relevant to nonclinical histopathology evaluations, and then presents points to consider applicable to both primary digital histopathology evaluation and digital peer review in GLP toxicology studies. The Supplemental Appendices provide additional tabulated resources.
Asunto(s)
Revisión por Pares , Toxicología , Laboratorios , Políticas , Proyectos de Investigación , Toxicología/métodosRESUMEN
Histopathologic evaluation and peer review using digital whole-slide images (WSIs) is a relatively new medium for assessing nonclinical toxicology studies in Good Laboratory Practice (GLP) environments. To better understand the present and future use of digital pathology in nonclinical toxicology studies, the Society of Toxicologic Pathology (STP) formed a working group to survey STP members with the goal of creating recommendations for implementation. The survey was administered in December 2019, immediately before the COVID-19 pandemic, and the results suggested that the use of digital histopathology for routine GLP histopathology assessment was not widespread. Subsequently, in follow-up correspondence during the pandemic, many responding institutions either began investigating or adopting digital WSI systems to reduce employee exposure to COVID-19. Therefore, the working group presents the survey results as a pre-pandemic baseline data set. Recommendations for use of WSI systems in GLP environments will be the subject of a separate publication.
Asunto(s)
COVID-19 , Toxicología , Comunicación , Humanos , Pandemias , Revisión por Pares , Políticas , Toxicología/métodosRESUMEN
Since whole-slide imaging has been commercially available for over 2 decades, digital pathology has become a constantly expanding aspect of the pathology profession that will continue to significantly impact how pathologists conduct their craft. While some aspects, such as whole-slide imaging for archiving, consulting, and teaching, have gained broader acceptance, other facets such as quantitative tissue image analysis and artificial intelligence-based assessments are still met with some reservations. While most vendors in this space have focused on diagnostic applications, that is, viewing one or few slides at a time, some are developing solutions tailored more specifically to the various aspects of veterinary pathology including updated diagnostic, discovery, and research applications. This has especially advanced the use of digital pathology in toxicologic pathology and drug development, for primary reads as well as peer reviews. It is crucial that pathologists gain a deeper understanding of digital pathology and tissue image analysis technology and their applications in order to fully use these tools in a way that enhances and improves the pathologist's assessment as well as work environment. This review focuses on an updated introduction to the basics of digital pathology and image analysis and introduces emerging topics around artificial intelligence and machine learning.
Asunto(s)
Inteligencia Artificial , Patología Veterinaria , Animales , Humanos , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , PatólogosRESUMEN
For decades, it has been postulated that digital pathology is the future. By now it is safe to say that we are living that future. Digital pathology has expanded into all aspects of pathology, including human diagnostic pathology, veterinary diagnostics, research, drug development, regulatory toxicologic pathology primary reads, and peer review. Digital tissue image analysis has enabled users to extract quantitative and complex data from digitized whole-slide images. The following editorial provides an overview of the content of this special issue of Toxicologic Pathology to highlight the range of key topics that are included in this compilation. In addition, the editors provide a commentary on important current aspects to consider in this space, such as accessibility of publication content to the machine learning-novice pathologist, the importance of adequate test set selection, and allowing for data reproducibility.
Asunto(s)
Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Humanos , Patólogos , Reproducibilidad de los ResultadosRESUMEN
Digital tissue image analysis is a computational method for analyzing whole-slide images and extracting large, complex, and quantitative data sets. However, as with any analysis method, the quality of generated results is dependent on a well-designed quality control system for the entire digital pathology workflow. Such system requires clear procedural controls, appropriate user training, and involvement of specialists to oversee key steps of the workflow. The toxicologic pathologist is responsible for reporting data obtained by digital image analysis and therefore needs to ensure that it is correct. To accomplish that, they must understand the main parameters of the quality control system and should play an integral part in its conception and implementation. This manuscript describes the most common digital tissue image analysis end points and potential sources of analysis errors. In addition, it outlines recommended approaches for ensuring quality and correctness of results for both classical and machine-learning based image analysis solutions, as adapted from a recently proposed Food and Drug Administration regulatory framework for modifications to artificial intelligence/machine learning-based software as a medical device. These approaches are beneficial for any type of toxicopathologic study which uses the described end points and can be adjusted based on the intended use of the image analysis solution.
Asunto(s)
Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador , Humanos , Interpretación de Imagen Asistida por Computador , Microscopía , Programas InformáticosRESUMEN
With advancements in whole slide imaging technology and improved understanding of the features of pathologist workstations required for digital slide evaluation, many institutions are investigating broad digital pathology adoption. The benefits of digital pathology evaluation include remote access to study or diagnostic case materials and integration of analysis and reporting tools. Diagnosis based on whole slide images is established in human medical pathology, and the use of digital pathology in toxicologic pathology is increasing. However, there has not been broad adoption in toxicologic pathology, particularly in the context of regulatory studies, due to lack of precedence. To address this topic, as well as practical aspects, the European Society of Toxicologic Pathology coordinated an expert international workshop to assess current applications and challenges and outline a set of minimal requirements needed to gain future regulatory acceptance for the use of digital toxicologic pathology workflows in research and development, so that toxicologic pathologists can benefit from digital slide technology.
RESUMEN
Pain is a complex constellation of cognitive, unpleasant sensory, and emotional experiences that primarily serves as a survival mechanism. Pain arises in the peripheral nervous system and pain signals synapse with nerve tracts extending into the central nervous system. Several different schemes are used to classify pain, including the underlying mechanism, tissues primarily affected, and time-course. Numerous animal models of pain, which should be employed with appropriate Institutional Animal Care and Use approvals, have been developed to elucidate pathophysiology mechanisms and aid in identification of novel therapeutic targets. The variety of available models underscores the observations that pain phenotypes are driven by several distinct mechanisms. Pain outcome measurement encompasses both reflexive (responses to heat, cold, mechanical and electrical stimuli) and nonreflexive (spontaneous pain responses to stimuli) behaviors. However, the question of translatability to human pain conditions and potential treatment outcomes remains a topic of continued scrutiny. In this review we discuss the different types of pain and their mechanisms and pathways, available rodent pain models with an emphasis on type of pain stimulations and pain outcome measures and discuss the role of pathologists in assessing and validating pain models.
Asunto(s)
Descubrimiento de Drogas , Sistema Nervioso Periférico/patología , Animales , Biología , Modelos Animales de Enfermedad , Dolor/fisiopatología , Dimensión del DolorRESUMEN
Toxicologic pathology is transitioning from analog to digital methods. This transition seems inevitable due to a host of ongoing social and medical technological forces. Of these, artificial intelligence (AI) and in particular machine learning (ML) are globally disruptive, rapidly growing sectors of technology whose impact on the long-established field of histopathology is quickly being realized. The development of increasing numbers of algorithms, peering ever deeper into the histopathological space, has demonstrated to the scientific community that AI pathology platforms are now poised to truly impact the future of precision and personalized medicine. However, as with all great technological advances, there are implementation and adoption challenges. This review aims to define common and relevant AI and ML terminology, describe data generation and interpretation, outline current and potential future business cases, discuss validation and regulatory hurdles, and most importantly, propose how overcoming the challenges of this burgeoning technology may shape toxicologic pathology for years to come, enabling pathologists to contribute even more effectively to answering scientific questions and solving global health issues. [Box: see text].
Asunto(s)
Inteligencia Artificial , Patología/métodos , Toxicología/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
In this white paper, experts from the Digital Pathology Association (DPA) define terminology and concepts in the emerging field of computational pathology, with a focus on its application to histology images analyzed together with their associated patient data to extract information. This review offers a historical perspective and describes the potential clinical benefits from research and applications in this field, as well as significant obstacles to adoption. Best practices for implementing computational pathology workflows are presented. These include infrastructure considerations, acquisition of training data, quality assessments, as well as regulatory, ethical, and cyber-security concerns. Recommendations are provided for regulators, vendors, and computational pathology practitioners in order to facilitate progress in the field. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Asunto(s)
Inteligencia Artificial/normas , Benchmarking/normas , Diagnóstico por Computador/normas , Interpretación de Imagen Asistida por Computador/normas , Patología/normas , Formulación de Políticas , Terminología como Asunto , Inteligencia Artificial/clasificación , Inteligencia Artificial/ética , Benchmarking/clasificación , Benchmarking/ética , Seguridad Computacional , Diagnóstico por Computador/clasificación , Diagnóstico por Computador/ética , Humanos , Patología/clasificación , Patología/ética , Valor Predictivo de las Pruebas , Flujo de TrabajoRESUMEN
Oncoimmunology (or immunooncology) is a burgeoning specialty of precision ("personalized") medicine designed to heighten the antitumor response of the immune system against molecules expressed excessively or only by tumor cells. This focus is necessary, as cancers are polyclonal tissues comprised of antigenically heterogeneous cells, the exact composition of which is shaped by the balance between antitumor immunity and tumor-promoting inflammation. Key targets include enhancing immune system (especially T cell) reactivity, inhibiting immune checkpoints, and promoting tumor cytolysis. Therapeutic modalities to address these targets include administering antibodies, cytokines, or small molecules that directly stimulate the immune system, attack tumor-associated antigens, or interfere with tumor-stroma interactions; adoptive transfer of autologous T cells following ex vivo selection/expansion/activation (typically after lymphoid-depleting regimens and in conjunction with immunostimulatory therapy); and vaccination (against tumor antigens). Pathology involvement in oncoimmunology product development is critical to assess expression of target molecules in tumor cells, stromal cells, and tumor-infiltrating leukocytes.
Asunto(s)
Alergia e Inmunología , Inmunoterapia , Oncología Médica , Neoplasias , Traslado Adoptivo , Animales , Linfocitos B , Humanos , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Medicina de Precisión , Linfocitos TRESUMEN
The 2017 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Montreal, Quebec, Canada at the Society of Toxicologic Pathology's 36th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and other topics covered during the symposium included renal papillary degeneration in perinatally exposed animals, an atriocaval mesothelioma, an unusual presentation of an alveolar-bronchiolar carcinoma, a paraganglioma of the organ of Zuckerkandl (also called an extra-adrenal pheochromocytoma), the use of human muscle samples to illustrate the challenges of manual scoring of fluorescent staining, intertubular spermatocytic seminomas, medical device pathology assessment and discussion of the approval process, collagen-induced arthritis, incisor denticles, ameloblast degeneration and poorly mineralized enamel matrix, connective tissue paragangliomas, microcystin-LR toxicity, perivascular mast cells in the forebrain thalamus unrelated to treatment, and 2 cases that provided a review of the International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) bone nomenclature and recommended application of the terminology in routine nonclinical toxicity studies.
Asunto(s)
Congresos como Asunto , Técnicas y Procedimientos Diagnósticos , Patología , Sociedades Científicas , Toxicología , Animales , Humanos , Procesamiento de Imagen Asistido por Computador , QuebecRESUMEN
Tissue image analysis (tIA) is emerging as a powerful tool for quantifying biomarker expression and distribution in complex diseases and tissues. Pancreatic ductal adenocarcinoma (PDAC) develops in a highly complex and heterogeneous tissue environment and, generally, has a very poor prognosis. Early detection of PDAC is confounded by limited knowledge of the pre-neoplastic disease stages and limited methods to quantitatively assess disease heterogeneity. We sought to develop a tIA approach to assess the most common PDAC precursor lesions, pancreatic intraepithelial neoplasia (PanIN), in tissues from KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx-Cre (KPC) mice, a validated model of PDAC development. tIA profiling of training regions of PanIN and tumor microenvironment (TME) cells was utilized to guide identification of PanIN/TME tissue compartment stratification criteria. A custom CellMap algorithm implementing these criteria was applied to whole-slide images of KPC mice pancreata sections to quantify p53 and Ki-67 biomarker staining in each tissue compartment as a proof-of-concept for the algorithm platform. The algorithm robustly identified a higher percentage of p53-positive cells in PanIN lesions relative to the TME, whereas no difference was observed for Ki-67. Ki-67 expression was also quantified in a human pancreatic tissue sample available to demonstrate the translatability of the CellMap algorithm to human samples. Together, our data demonstrated the utility of CellMap to enable objective and quantitative assessments, across entire tissue sections, of PDAC precursor lesions in preclinical and clinical models of this disease to support efforts leading to novel insights into disease progression, diagnostic markers, and potential therapeutic targets.
Asunto(s)
Adenocarcinoma in Situ/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico , Lesiones Precancerosas/diagnóstico , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma in Situ/diagnóstico por imagen , Adenocarcinoma in Situ/metabolismo , Adenocarcinoma in Situ/patología , Algoritmos , Animales , Automatización de Laboratorios , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Detección Precoz del Cáncer/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Ratones Mutantes , Ratones Transgénicos , Páncreas/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/diagnóstico por imagen , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Programas Informáticos , Organismos Libres de Patógenos Específicos , Bancos de Tejidos , UltrasonografíaRESUMEN
Historically, pathologists perform manual evaluation of H&E- or immunohistochemically-stained slides, which can be subjective, inconsistent, and, at best, semiquantitative. As the complexity of staining and demand for increased precision of manual evaluation increase, the pathologist's assessment will include automated analyses (i.e., "digital pathology") to increase the accuracy, efficiency, and speed of diagnosis and hypothesis testing and as an important biomedical research and diagnostic tool. This commentary introduces the many roles for pathologists in designing and conducting high-throughput digital image analysis. Pathology review is central to the entire course of a digital pathology study, including experimental design, sample quality verification, specimen annotation, analytical algorithm development, and report preparation. The pathologist performs these roles by reviewing work undertaken by technicians and scientists with training and expertise in image analysis instruments and software. These roles require regular, face-to-face interactions between team members and the lead pathologist. Traditional pathology training is suitable preparation for entry-level participation on image analysis teams. The future of pathology is very exciting, with the expanding utilization of digital image analysis set to expand pathology roles in research and drug development with increasing and new career opportunities for pathologists.
Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Interpretación de Imagen Asistida por Computador/normas , Patólogos , Patología Clínica/métodos , Patología Clínica/normas , HumanosRESUMEN
Extracellular nucleotides and nucleosides are important signaling molecules in the lung. Nucleotide and nucleoside concentrations in alveolar lining fluid are controlled by a complex network of surface ectonucleotidases. Previously, we demonstrated that influenza A/WSN/33 (H1N1) virus resulted in increased levels of the nucleotide ATP and the nucleoside adenosine in bronchoalveolar lavage fluid (BALF) of wild-type (WT) C57BL/6 mice. Influenza-induced acute lung injury (ALI) was highly attenuated in A1-adenosine receptor-knockout mice. Because AMP hydrolysis by the ecto-5'-nucleotidase (CD73) plays a central role in and is rate-limiting for generation of adenosine in the normal lung, we hypothesized that ALI would be attenuated in C57BL/6-congenic CD73-knockout (CD73-KO) mice. Infection-induced hypoxemia, bradycardia, viral replication, and bronchoconstriction were moderately increased in CD73-KO mice relative to WT controls. However, postinfection weight loss, pulmonary edema, and parenchymal dysfunction were not altered. Treatment of WT mice with the CD73 inhibitor 5'-(α,ß-methylene) diphosphate (APCP) also had no effect on infection-induced pulmonary edema but modestly attenuated hypoxemia. BALF from CD73-KO and APCP-treated WT mice contained more IL-6 and CXCL-10/IFN-γ-induced protein 10, less CXCL-1/keratinocyte chemoattractant, and fewer neutrophils than BALF from untreated WT controls. BALF from APCP-treated WT mice also contained fewer alveolar macrophages and more transforming growth factor-ß than BALF from untreated WT mice. These results indicate that CD73 is not necessary for development of ALI following influenza A virus infection and suggest that tissue-nonspecific alkaline phosphatase may be responsible for increased adenosine generation in the infected lung. However, they do suggest that CD73 has a previously unrecognized immunomodulatory role in influenza.
Asunto(s)
5'-Nucleotidasa/metabolismo , Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/inmunología , Inmunidad Innata , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/inmunología , 5'-Nucleotidasa/genética , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/virología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Quimiocinas/metabolismo , Adaptabilidad , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Inmunidad Innata/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Recuento de Leucocitos , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/virología , Edema Pulmonar/etiología , Edema Pulmonar/patología , Edema Pulmonar/fisiopatología , Replicación Viral/efectos de los fármacosRESUMEN
UNLABELLED: We have shown that bronchoalveolar epithelial A1-adenosine receptors (A1-AdoR) are activated in influenza A virus-infected mice. Alveolar macrophages and neutrophils also express A1-AdoRs, and we hypothesized that activation of A1-AdoRs on these cells will promote macrophage and neutrophil chemotaxis and activation and thereby play a role in the pathogenesis of influenza virus-induced acute lung injury. Wild-type (WT) C57BL/6 mice, congenic A1-AdoR knockout (A1-KO) mice, and mice that had undergone reciprocal bone marrow transfer were inoculated intranasally with 10,000 PFU/mouse influenza A/WSN/33 (H1N1) virus. Alternatively, WT mice underwent daily treatment with the A1-AdoR antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) from 1 day prior to inoculation. Infection increased bronchoalveolar lining fluid (BALF) adenosine comparably in WT and A1-KO mice. Infection of WT mice resulted in reduced carotid arterial O2 saturation (hypoxemia), lung pathology, pulmonary edema, reduced lung compliance, increased basal airway resistance, and hyperresponsiveness to methacholine. These effects were absent or significantly attenuated in A1-KO mice. Levels of BALF leukocytes, gamma interferon (IFN-γ), and interleukin 10 (IL-10) were significantly reduced in infected A1-KO mice, but levels of KC, IP-10, and MCP-1 were increased. Reciprocal bone marrow transfer resulted in WT-like lung injury severity, but BALF leukocyte levels increased only in WT and A1-KO mice with WT bone barrow. Hypoxemia, pulmonary edema, and levels of BALF alveolar macrophages, neutrophils, IFN-γ, and IL-10 were reduced in DPCPX-treated WT mice. Levels of viral replication did not differ between mouse strains or treatment groups. These findings indicate that adenosine activation of leukocyte A1-AdoRs plays a significant role in their recruitment to the infected lung and contributes to influenza pathogenesis. A1-AdoR inhibitor therapy may therefore be beneficial in patients with influenza virus-induced lung injury. IMPORTANCE: Because antiviral drugs are of limited efficacy in patients hospitalized for influenza virus-induced respiratory failure, there is an urgent need for new therapeutics that can limit the progression of lung injury and reduce influenza death rates. We show that influenza A virus infection results in increased production of the nucleoside adenosine in the mouse lung and that activation of A1-subtype adenosine receptors by adenosine contributes significantly to both recruitment of innate immune cells to the lung and development of acute lung injury following influenza virus infection. We also show that treatment with an A1-adenosine receptor antagonist reduces the severity of lung injury in influenza virus-infected mice. Our findings indicate that adenosine plays an important and previously unrecognized role in the innate immune response to influenza virus infection and suggest that drugs which can inhibit either generation of adenosine or activation of A1-adenosine receptors may be beneficial in treating influenza patients hospitalized for respiratory failure.
Asunto(s)
Lesión Pulmonar Aguda/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Leucocitos/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptor de Adenosina A1/metabolismo , Lesión Pulmonar Aguda/patología , Traslado Adoptivo , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Subtipo H1N1 del Virus de la Influenza A/inmunología , Leucocitos/fisiología , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/patología , Receptor de Adenosina A1/deficienciaRESUMEN
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Dificultad Respiratoria , Animales , Pulmón/patología , Ratones , Edema PulmonarRESUMEN
Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Infecciones por Burkholderia/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Proteínas de Choque Térmico/genética , Macrófagos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores/metabolismo , Infecciones por Burkholderia/complicaciones , Infecciones por Burkholderia/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia/fisiología , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Expresión Génica , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Humanos , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Transgénicos , Viabilidad Microbiana , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Proteína Sequestosoma-1 , Transfección , Ubiquitina/genética , Ubiquitina/metabolismoRESUMEN
BACKGROUND: Seasonal and pandemic influenza are significant public health concerns. Influenza stimulates respiratory epithelial Cl(-) secretion via the cystic fibrosis transmembrane conductance regulator (CFTR). The purpose of this study was to determine the contribution of this effect to influenza pathogenesis in mice with reduced CFTR activity. METHODS: C57BL/6-congenic mice heterozygous for the F508del CFTR mutation (HET) and wild-type (WT) controls were infected intranasally with 10 000 focus-forming units of influenza A/WSN/33 (H1N1) per mouse. Body weight, arterial O2 saturation, and heart rate were monitored daily. Pulmonary edema and lung function parameters were derived from ratios of wet weight to dry weight and the forced-oscillation technique, respectively. Levels of cytokines and chemokines in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay. RESULTS: Relative to WT mice, influenza virus-infected HET mice showed significantly delayed mortality, which was accompanied by attenuated hypoxemia, cardiopulmonary dysfunction, and pulmonary edema. However, viral replication and weight loss did not differ. The protective HET phenotype was correlated with exaggerated alveolar macrophage and interleukin 6 responses to infection and was abrogated by alveolar macrophage depletion, using clodronate liposomes. CONCLUSIONS: Reduced CFTR expression modulates the innate immune response to influenza and alters disease pathogenesis. CFTR-mediated Cl(-) secretion is therefore an important host determinant of disease, and CFTR inhibition may be of therapeutic benefit in influenza.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Heterocigoto , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Eliminación de Secuencia , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/análisis , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Pulmón/patología , Pulmón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Mutación , OrthomyxoviridaeRESUMEN
[This corrects the article DOI: 10.3389/fimmu.2024.1345473.].