Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 154(4): 827-42, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23953114

RESUMEN

The epidemic of heart failure has stimulated interest in understanding cardiac regeneration. Evidence has been reported supporting regeneration via transplantation of multiple cell types, as well as replication of postmitotic cardiomyocytes. In addition, the adult myocardium harbors endogenous c-kit(pos) cardiac stem cells (eCSCs), whose relevance for regeneration is controversial. Here, using different rodent models of diffuse myocardial damage causing acute heart failure, we show that eCSCs restore cardiac function by regenerating lost cardiomyocytes. Ablation of the eCSC abolishes regeneration and functional recovery. The regenerative process is completely restored by replacing the ablated eCSCs with the progeny of one eCSC. eCSCs recovered from the host and recloned retain their regenerative potential in vivo and in vitro. After regeneration, selective suicide of these exogenous CSCs and their progeny abolishes regeneration, severely impairing ventricular performance. These data show that c-kit(pos) eCSCs are necessary and sufficient for the regeneration and repair of myocardial damage.


Asunto(s)
Células Madre Adultas/trasplante , Insuficiencia Cardíaca/terapia , Miocitos Cardíacos/citología , Células Madre Adultas/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Proteínas Fluorescentes Verdes/análisis , Corazón/fisiología , Insuficiencia Cardíaca/inducido químicamente , Humanos , Isoproterenol , Masculino , Ratones , Miocitos Cardíacos/química , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Factor de Células Madre/metabolismo
2.
Eur Heart J ; 41(45): 4332-4345, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32330934

RESUMEN

AIMS: Cardiac myxomas usually develop in the atria and consist of an acid-mucopolysaccharide-rich myxoid matrix with polygonal stromal cells scattered throughout. These human benign tumours are a valuable research model because of the rarity of cardiac tumours, their clinical presentation and uncertain origin. Here, we assessed whether multipotent cardiac stem/progenitor cells (CSCs) give rise to atrial myxoma tissue. METHODS AND RESULTS: Twenty-three myxomas were collected and analysed for the presence of multipotent CSCs. We detected myxoma cells positive for c-kit (c-kitpos) but very rare Isl-1 positive cells. Most of the c-kitpos cells were blood lineage-committed CD45pos/CD31pos cells. However, c-kitpos/CD45neg/CD31neg cardiac myxoma cells expressed stemness and cardiac progenitor cell transcription factors. Approximately ≤10% of the c-kitpos/CD45neg/CD31neg myxoma cells also expressed calretinin, a characteristic of myxoma stromal cells. In vitro, the c-kitpos/CD45neg/CD31neg myxoma cells secrete chondroitin-6-sulfate and hyaluronic acid, which are the main components of gelatinous myxoma matrix in vivo. In vitro, c-kitpos/CD45neg/CD31neg myxoma cells have stem cell properties being clonogenic, self-renewing, and sphere forming while exhibiting an abortive cardiac differentiation potential. Myxoma-derived CSCs possess a mRNA and microRNA transcriptome overall similar to normal myocardium-derived c-kitpos/CD45neg/CD31negCSCs , yet showing a relatively small and relevant fraction of dysregulated mRNA/miRNAs (miR-126-3p and miR-335-5p, in particular). Importantly, myxoma-derived CSCs but not normal myocardium-derived CSCs, seed human myxoma tumours in xenograft's in immunodeficient NOD/SCID mice. CONCLUSION: Myxoma-derived c-kitpos/CD45neg/CD31neg CSCs fulfill the criteria expected of atrial myxoma-initiating stem cells. The transcriptome of these cells indicates that they belong to or are derived from the same lineage as the atrial multipotent c-kitpos/CD45neg/CD31neg CSCs. Taken together the data presented here suggest that human myxomas could be the first-described CSC-related human heart disease.


Asunto(s)
Neoplasias Cardíacas , Mixoma , Animales , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre
4.
J Proteome Res ; 10(12): 5444-53, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22043922

RESUMEN

Ferritin, the major intracellular iron-storage protein, is made of 24 subunits of two types, H and L. Besides regulating intracellular iron homeostasis, it has been found that ferritin, in particular the H subunit (FHC), is involved in different biological events such as cell differentiation and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled by the FHC. We identified about 200 differentially expressed proteins and classified them in clusters on the basis of their functions, as proteins involved in metabolic processes, cell adhesion, migration, and proliferation processes. Some of them have captured our attention because of their involvement in metabolic pathways related to tumor progression and metastasis. In vitro assays confirmed that the FHC-silenced MM07(m) cells are characterized by a decreased growth activity, a reduced invasiveness, and a reduced cell adhesion capability. Moreover, nude mice (CD1 nu/nu), subcutaneously injected with FHC-silenced MM07(m) cells, showed a remarkable 4-fold reduction of their tumor growth capacity compared to those who received the FHC-unsilenced MM07(m) counterpart. In conclusion, these data indicate that gene silencing technology, coupled to proteomic analysis, is a powerful tool for a better understanding of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma.


Asunto(s)
Apoferritinas/genética , Silenciador del Gen , Proteoma/análisis , Animales , Apoferritinas/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Melanoma Experimental , Metaboloma , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteómica/métodos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transfección
5.
Dev Biol ; 337(2): 199-210, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19874813

RESUMEN

Juxtamembrane signaling via the membrane growth factor KitL is critical for Kit mediated functions. KitL has a conserved cytoplasmic domain and has been shown to possess a monomeric leucine-dependent basolateral targeting signal. To investigate the consequences in vivo of impaired basolateral KitL targeting in polarized epithelial cells, we have mutated this critical leucine to alanine using a knock-in strategy. KitL(L263A/L263A) mutant mice are pigmented normally and steady-state hematopoiesis is unaffected although peritoneal and skin mast cell numbers are significantly increased. KitL localization is affected in the Sertoli cells of the KitL(L263A/L263A) testis and testis size is reduced in these mice due to aberrant spermatogonial proliferation. Furthermore, the effect of the KitL L263A mutation on the testicular phenotype is dosage dependent. The tubules of hemizygous KitL(L263A/Sl) mice completely lack germ cells in contrast to the weaker testicular phenotype of KitL(L263A/L263A) mice. The onset of the testis phenotype coincides with the formation of tight junctions between Sertoli cells during postnatal development. Thus, the altered sorting of KitL is dispensable for hematopoietic and melanogenic lineages, yet is crucial in the testicular environment, where the basal membranes of adjacent polarized Sertoli cells form a niche for the proliferating spermatogonia.


Asunto(s)
Polaridad Celular , Hematopoyesis/fisiología , Espermatogénesis/fisiología , Factor de Células Madre/química , Factor de Células Madre/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Recuento de Células , Proliferación Celular , Exones/genética , Marcación de Gen , Linfopoyesis , Masculino , Mastocitos/citología , Ratones , Datos de Secuencia Molecular , Mutación/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Eliminación de Secuencia , Relación Estructura-Actividad , Testículo/metabolismo , Testículo/patología
6.
Basic Res Cardiol ; 106(4): 667-79, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21424618

RESUMEN

Current available biomarkers cannot identify myocardial ischemia without necrosis. To overcome this issue and to increase diagnostic power, we evaluated the activation of the three MAPK pathways, ERK1/2, JNK and p38, in T lymphocytes of patients with acute coronary syndromes (ACS). We included sixty consecutive patients affected by either unstable angina (UA, N = 22), Non- ST-segment elevation MI (NSTEMI, N = 19) or ST-segment elevation MI (STEMI, N = 19). Two separate groups of patients were matched as controls: healthy subjects (CTRL, N = 20) and patients with stable coronary artery disease (CAD, N = 21). MAPK activation in T lymphocytes, measured by phospho-ERK1/2, phospho-JNK and phospho-p38 levels, was assessed by flow cytometry analysis which revealed significantly increased phosphorylated levels of ERK1/2 in patients with UA, compared to controls. In UA patients no significant changes were detected for phospho-JNK compared to both control groups. NSTEMI and STEMI groups showed a statistically significant increase in both phospho-ERK1/2 and phospho-JNK, compared to control groups. All ACS groups demonstrated significantly increased phosphorylation of p38 compared to CTRL, but not CAD. ROC curves showed that a cut-off value of 22.5 intensity of fluorescence for phospho-ERK1/2 was able to significantly discriminate UA patients from patients with stable angina with 78% sensitivity and 90% specificity. Therefore, a differential MAPK activation in T lymphocytes denotes patients with ACS. Indeed, patients with unstable angina are identified with high specificity by activated ERK1/2 and normal JNK levels. These data could represent a valuable new molecular signature to be used as specific biomarkers for the diagnosis of unstable angina within ACS.


Asunto(s)
Síndrome Coronario Agudo/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Linfocitos T/metabolismo , Adulto , Anciano , Angina Inestable/diagnóstico , Activación Enzimática , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Masculino , Persona de Mediana Edad , Miocardio/patología , Necrosis
7.
J Exp Med ; 199(6): 867-78, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15024050

RESUMEN

The Kit receptor functions in hematopoiesis, lymphocyte development, gastrointestinal tract motility, melanogenesis, and gametogenesis. To investigate the roles of different Kit signaling pathways in vivo, we have generated knock-in mice in which docking sites for PI 3-kinase (KitY719) or Src kinase (KitY567) have been mutated. Whereas steady-state hematopoiesis is normal in KitY719F/Y719F and KitY567F/Y567F mice, lymphopoiesis is affected differentially. The KitY567F mutation, but not the KitY719F mutation, blocks pro T cell and pro B cell development in an age-dependent manner. Thus, the Src family kinase, but not the PI 3-kinase docking site in Kit, mediates a critical signal for lymphocyte development. In agreement with these results, treatment of normal mice with the Kit tyrosine kinase inhibitor imatinib (Gleevec) leads to deficits in pro T and pro B cell development, similar to those seen in KitY567F/Y567F and KitW/W mice. The two mutations do not affect embryonic gametogenesis but the KitY719F mutation blocks spermatogenesis at the spermatogonial stages and in contrast the KitY567F mutation does not affect this process. Therefore, Kit-mediated PI 3-kinase signaling and Src kinase family signaling is highly specific for different cellular contexts in vivo.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo , Factores de Edad , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/fisiología , Benzamidas , Western Blotting , Cartilla de ADN , Citometría de Flujo , Técnicas Histológicas , Mesilato de Imatinib , Linfopoyesis/efectos de los fármacos , Linfopoyesis/genética , Masculino , Mastocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Piperazinas/farmacología , Reacción en Cadena de la Polimerasa , Pruebas de Precipitina , Pirimidinas/farmacología , Espermatogénesis/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/fisiología , Testículo/anatomía & histología , Familia-src Quinasas/genética
8.
Cells ; 9(9)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858971

RESUMEN

Enhanced glycolysis is a hallmark of breast cancer. In cancer cells, the high glycolytic flux induces carbonyl stress, a damaging condition in which the increase of reactive carbonyl species makes DNA, proteins, and lipids more susceptible to glycation. Together with glucose, methylglyoxal (MGO), a byproduct of glycolysis, is considered the main glycating agent. MGO is highly diffusible, enters the nucleus, and can react with easily accessible lysine- and arginine-rich tails of histones. Glycation adducts on histones undergo oxidization and further rearrange to form stable species known as advanced glycation end-products (AGEs). This modification alters nucleosomes stability and chromatin architecture deconstructing the histone code. Formation of AGEs has been associated with cancer, diabetes, and several age-related diseases. Recently, DJ-1, a cancer-associated protein that protects cells from oxidative stress, has been described as a deglycase enzyme. Although its role in cell survival results still controversial, in several human tumors, its expression, localization, oxidation, and phosphorylation were found altered. This work aimed to explore the molecular mechanism that triggers the peculiar cellular compartmentalization and the specific post-translational modifications (PTM) that, occurring in breast cancer cells, influences the DJ-1 dual role. Using a proteomic approach, we identified on DJ-1 a novel threonine phosphorylation (T125) that was found, by the in-silico tool scansite 4, as part of a putative Akt consensus. Notably, this threonine is in addition to histidine 126, a key residue involved in the formation of catalytic triade (glu18-Cys106-His126) inside the glioxalase active site of DJ. Interestingly, we found that pharmacological modulation of Akt pathway induces a functional tuning of DJ-1 proteoforms, as well as their shuttle from cytosol to nucleus, pointing out that pathway as critical in the development of DJ-1 pro-tumorigenic abilities. Deglycase activity of DJ-1 on histones proteins, investigated by coupling 2D tau gel with LC-MS/MS and 2D-TAU (Triton-Acid-Urea)-Western blot, was found correlated with its phosphorylation status that, in turn, depends from Akt activation. In normal conditions, DJ-1 acts as a redox-sensitive chaperone and as an oxidative stress sensor. In cancer cells, glycolytic rewiring, inducing increased reactive oxygen species (ROS) levels, enhances AGEs products. Alongside, the moderate increase of ROS enhances Akt signaling that induces DJ-1-phosphorylation. When phosphorylated DJ-1 increases its glyoxalase activity, the level of AGEs on histones decreases. Therefore, phospho-DJ-1 prevents glycation-induced histones misregulation and its Akt-related hyperactivity represents a way to preserve the epigenome landscape sustaining proliferation of cancer cells. Together, these results shed light on an interesting mechanism that cancer cells might execute to escape the metabolic induced epigenetic misregulation that otherwise could impair their malignant proliferative potential.


Asunto(s)
Neoplasias de la Mama/genética , Cromatografía Liquida/métodos , Epigénesis Genética/genética , Proteína Desglicasa DJ-1/metabolismo , Espectrometría de Masas en Tándem/métodos , Femenino , Humanos , Modelos Moleculares
9.
Cancers (Basel) ; 12(2)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019064

RESUMEN

Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future.

10.
Am J Physiol Heart Circ Physiol ; 297(6): H2015-25, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19783773

RESUMEN

cAMP inhibits proliferation in most cell types, triggering different and sometimes opposing molecular pathways. p85alpha (phosphatidylinositol 3-kinase regulatory subunit) is phosphorylated by cAMP/PKA in certain cell lineages, but its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are unknown. In the present study, we evaluated 1) the role of p85alpha in the integration of cAMP/PKA-dependent signaling on the regulation of VSMC and EC growth in vitro; and 2) the effects of PKA-modified p85alpha on neointimal hyperplasia and endothelial healing after balloon injury in vivo. Plasmid constructs carrying wild-type and PKA-modified p85alpha were employed in VSMCs and ECs in vitro and after balloon injury in rat carotid arteries in vivo. cAMP/PKA reduced VSMC proliferation through p85alpha phosphorylation. Transfected PKA-activated p85alpha binds p21ras, reducing ERK1/2 activation and VSMC proliferation in vitro. In contrast, EC proliferation inhibition by cAMP is independent from PKA modification of p85alpha and ERK1/2 inhibition; indeed, PKA-activated p85alpha did not inhibit per se ERK1/2 activation and proliferation in ECs in vitro. Interestingly, cAMP reduced both VSMC and EC apoptotic death through p85alpha phosphorylation. Accordingly, PKA-activated p85alpha triggered Akt activation, reducing both VSMC and EC apoptosis in vitro. Finally, compared with controls, vascular gene transfer of PKA-activated p85alpha significantly reduced neointimal formation after balloon injury in rats, without inhibiting endothelial regeneration of the injured arterial segment. In conclusions, PKA-activated p85alpha integrates cAMP/PKA signaling differently in VSMCs and ECs. By reducing neointimal hyperplasia without inhibiting endothelial regeneration, it exerts a protective effect against restenosis after balloon injury.


Asunto(s)
Traumatismos de las Arterias Carótidas/enzimología , Proliferación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células Endoteliales/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Animales , Apoptosis , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Cateterismo , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Activación Enzimática , Hiperplasia , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transfección , Proteínas ras/metabolismo
11.
Mol Cell Biol ; 26(15): 5850-60, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16847336

RESUMEN

The Kit receptor tyrosine kinase functions in hematopoiesis, melanogenesis, and gametogenesis and in interstitial cells of Cajal. We previously identified two upstream hypersensitive site (HS) clusters in mast cells and melanocytes. Here we investigated the roles of these 5' HS sequences in Kit expression using transgenic mice carrying Kit-GFP reporter constructs. In these mice there is close correspondence between Kit-GFP reporter and endogenous Kit gene expression in most tissues analyzed. Deletion analysis defined the 5' upstream HS cluster region as critical for Kit expression in mast cells. Furthermore, chromatin immunoprecipitation analysis in mast cells showed that H3 and H4 histone hyperacetylation and RNA polymerase II recruitment within the Kit promoter and in the 5' HS region were associated with Kit expression. Therefore, the 5' upstream hypersensitivity sites appear to be critical components of locus control region-mediated Kit gene activation in mast cells.


Asunto(s)
Regulación de la Expresión Génica , Región de Control de Posición , Mastocitos/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Cromatina/química , Cromatina/metabolismo , Femenino , Genes Reporteros , Histonas/metabolismo , Masculino , Mastocitos/citología , Ratones , Ratones Transgénicos , Conformación de Ácido Nucleico , Ovario/citología , Ovario/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/genética , Testículo/citología , Testículo/metabolismo , Activación Transcripcional
12.
Aging (Albany NY) ; 11(23): 11722-11755, 2019 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-31816600

RESUMEN

Histones and their variants are subjected to several post-translational modifications (PTMs). Histones PTMs play an important role in the regulation of gene expression and are critical for the development and progression of many types of cancer, including breast cancer. In this study, we used two-dimensional TAU/SDS electrophoresis, coupled with mass spectrometry for a comprehensive profiling of histone PTMs in breast cancer cell lines.Proteomic approach allowed us to identify 85 histone PTMs, seventeen of which are not reported in the UniProt database. Western blot analysis was performed to confirm a peculiar pattern of PTMs in the sporadic and hereditary breast cancer cell lines compared to normal cells. Overlapping mass spectrometry data with western blotting results, we identified, for the first time to our knowledge, a tyrosine phosphorylation on histone H1, which is significantly higher in breast cancer cells. Additionally, by inhibiting specific signaling paths, such as PI3K, PPARγ and FAK pathways, we established a correlation between their regulation and the presence of new histone PTMs. Our results may provide new insight on the possible implication of these modifications in breast cancer and may offer new perspectives for future clinical applications.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Histonas/metabolismo , Proteómica , Proliferación Celular , Femenino , Histonas/genética , Humanos , Células MCF-7 , Procesamiento Proteico-Postraduccional , Transcriptoma
13.
Artículo en Inglés | MEDLINE | ID: mdl-31275242

RESUMEN

c-Kit, a type III receptor tyrosine kinase (RTK), is involved in multiple intracellular signaling whereby it is mainly considered a stem cell factor receptor, which participates in vital functions of the mammalian body, including the human. Furthermore, c-kit is a necessary yet not sufficient marker to detect and isolate several types of tissue-specific adult stem cells. Accordingly, c-kit was initially used as a marker to identify and enrich for adult cardiac stem/progenitor cells (CSCs) that were proven to be clonogenic, self-renewing and multipotent, being able to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro as well as in vivo after myocardial injury. Afterwards it was demonstrated that c-kit expression labels a heterogenous cardiac cell population, which is mainly composed by endothelial cells while only a very small fraction represents CSCs. Furthermore, c-kit as a signaling molecule is expressed at different levels in this heterogenous c-kit labeled cardiac cell pool, whereby c-kit low expressers are enriched for CSCs while c-kit high expressers are endothelial and mast cells. This heterogeneity in cell composition and expression levels has been neglected in recent genetic fate map studies focusing on c-kit, which have claimed that c-kit identifies cells with robust endothelial differentiation potential but with minimal if not negligible myogenic commitment potential. However, modification of c-kit gene for Cre Recombinase expression in these Cre/Lox genetic fate map mouse models produced a detrimental c-kit haploinsufficiency that prevents efficient labeling of true CSCs on one hand while affecting the regenerative potential of these cells on the other. Interestingly, c-kit haploinsufficiency in c-kit-deficient mice causes a worsening myocardial repair after injury and accelerates cardiac aging. Therefore, these studies have further demonstrated that adult c-kit-labeled CSCs are robustly myogenic and that the adult myocardium relies on c-kit expression to regenerate after injury and to counteract aging effects on cardiac structure and function.

14.
J Mol Med (Berl) ; 97(5): 675-690, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30887112

RESUMEN

The antigen-mediated triggering of B cell receptor (BCR) activates the transcription factor NF-κB that regulates the expression of genes involved in B cell differentiation, proliferation, and survival. The tyrosine kinase Btk is essentially required for the activation of NF-κB in BCR signaling through the canonical pathway of IKK-dependent phosphorylation and proteasomal degradation of IκB-α, the main repressor of NF-κB. Here, we provide the evidence of an additional mechanism of NF-κB activation in BCR signaling that is Btk-dependent and IKK-independent. In DeFew B lymphoma cells, the anti-IgM stimulation of BCR activated Btk and NF-κB p50/p65 within 0.5 min in absence of IKK activation and IκB-α degradation. IKK silencing did not affect the rapid activation of NF-κB. Within this short time, Btk associated and phosphorylated IκB-α at Y289 and Y305, and, concomitantly, p65 translocated from cytosol to nucleus. The mutant IκB-α Y289/305A inhibited the NF-κB activation after BCR triggering, suggesting that the phosphorylation of IκB-α at tyrosines 289 and 305 was required for NF-κB activation. In primary chronic lymphocytic leukemia cells, Btk was constitutively active and associated with IκB-α, which correlated with Y305-phosphorylation of IκB-α and increased NF-κB activity compared with healthy B cells. Altogether, these results describe a novel mechanism of NF-κB activation in BCR signaling that could be relevant for Btk-targeted therapy in B-lymphoproliferative disorders. KEY MESSAGES: Anti-IgM stimulation of BCR activates NF-κB p50/p65 within 30 s by a Btk-dependent and IKK-independent mechanism. Btk associates and phosphorylates IκB-α at Y289 and Y305, promoting NF-κB activation. In primary CLLs, the binding of Btk to IκB-α correlates with tyrosine phosphorylation of IκB-α and increased NF-κB activity.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/inmunología , Inhibidor NF-kappaB alfa/inmunología , FN-kappa B/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Línea Celular Tumoral , Células HEK293 , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Fosforilación , Transducción de Señal
15.
Cancers (Basel) ; 11(2)2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30781685

RESUMEN

Aberrant expression of microRNAs (miRNAs) has been associated to the pathogenesis of multiple myeloma (MM). While miR-155 is considered a therapeutic target in several malignancies, its role in MM is still unclear. The analysis of miR-155 expression indicates its down-regulation in MM patient-derived as compared to healthy plasma cells, thus pointing to a tumor suppressor role in this malignancy. On this finding, we investigated miR-155 replacement as a potential anti-tumor strategy in MM. The miR-155 enforced expression triggered anti-proliferative and pro-apoptotic effects in vitro. Given the lower miR-155 levels in bortezomib-resistant as compared to sensitive MM cells, we analyzed the possible involvement of miR-155 in bortezomib resistance. Importantly, miR-155 replacement enhanced bortezomib anti-tumor activity both in vitro and in vivo in a xenograft model of human MM. In primary MM cells, we observed an inverse correlation between miR-155 and the mRNA encoding the proteasome subunit gene PSMß5, whose dysregulation has been largely implicated in bortezomib resistance, and we validated PSMß5 3'UTR mRNA targeting, along with reduced proteasome activity, by miR-155. Collectively, our findings demonstrate that miR-155 elicits anti-MM activity, likely via proteasome inhibition, providing the framework for miR-155-based anti-MM therapeutic strategies.

16.
Cell Death Dis ; 10(6): 436, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164633

RESUMEN

An overdose of Isoproterenol (ISO) causes acute cardiomyocyte (CM) dropout and activates the resident cardiac c-kitpos stem/progenitor cells (CSCs) generating a burst of new CM formation that replaces those lost to ISO. Recently, unsuccessful attempts to reproduce these findings using c-kitCre knock-in (KI) mouse models were reported. We tested whether c-kit haploinsufficiency in c-kitCreKI mice was the cause of the discrepant results in response to ISO. Male C57BL/6J wild-type (wt) mice and c-kitCreKI mice were given a single dose of ISO (200 and/or 400 mg/Kg s.c.). CM formation was measured with different doses and duration of BrdU or EdU. We compared the myogenic and regenerative potential of the c-kitCreCSCs with wtCSCs. Acute ISO overdose causes LV dysfunction with dose-dependent CM death by necrosis and apoptosis, whose intensity follows a basal-apical and epicardium to sub-endocardium gradient, with the most severe damage confined to the apical sub-endocardium. The damage triggers significant new CM formation mainly in the apical sub-endocardial layer. c-kit haploinsufficiency caused by c-kitCreKIs severely affects CSCs myogenic potential. c-kitCreKI mice post-ISO fail to respond with CSC activation and show reduced CM formation and suffer chronic cardiac dysfunction. Transplantation of wtCSCs rescued the defective regenerative cardiac phenotype of c-kitCreKI mice. Furthermore, BAC-mediated transgenesis of a single c-kit gene copy normalized the functional diploid c-kit content of c-kitCreKI CSCs and fully restored their regenerative competence. Overall, these data show that c-kit haploinsufficiency impairs the endogenous cardioregenerative response after injury affecting CSC activation and CM replacement. Repopulation of c-kit haploinsufficient myocardial tissue with wtCSCs as well c-kit gene deficit correction of haploinsufficient CSCs restores CM replacement and functional cardiac repair. Thus, adult neo-cardiomyogenesis depends on and requires a diploid level of c-kit.


Asunto(s)
Células Madre Adultas/fisiología , Desarrollo de Músculos/genética , Miocitos Cardíacos/fisiología , Proteínas Proto-Oncogénicas c-kit/genética , Regeneración/genética , Células Madre Adultas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Haploinsuficiencia , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Isoproterenol/administración & dosificación , Isoproterenol/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Necrosis , Proteínas Proto-Oncogénicas c-kit/metabolismo , Cicatrización de Heridas/genética
17.
Cancer Immunol Res ; 7(5): 841-852, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940644

RESUMEN

Immune checkpoint blockade therapy has changed prognoses for many melanoma patients. However, immune responses that correlate with clinical progression of the disease are still poorly understood. To identify immune responses correlating with melanoma clinical evolution, we analyzed serum cytokines as well as circulating NK and T-cell subpopulations from melanoma patients. The patients' immune profiles suggested that melanoma progression leads to changes in peripheral blood NK and T-cell subsets. Stage IV melanoma was characterized by an increased frequency of CCR7+CD56bright NK cells as well as high serum concentrations of the CCR7 ligand CCL19. CCR7 expression and CCL19 secretion were also observed in melanoma cell lines. The CCR7+ melanoma cell subpopulation coexpressed PD-L1 and Galectin-9 and had stemness properties. Analysis of melanoma-derived cancer stem cells (CSC) showed high CCR7 expression; these CSCs were efficiently recognized and killed by NK cells. An accumulation of CCR7+, PD-L1+, and Galectin-9+ melanoma cells in melanoma metastases was demonstrated ex vivo Altogether, our data identify biomarkers that may mark a CCR7-driven metastatic melanoma pathway.


Asunto(s)
Células Asesinas Naturales/inmunología , Melanoma/inmunología , Antígeno B7-H1/inmunología , Línea Celular , Quimiocina CCL19/inmunología , Técnicas de Cocultivo , Citocinas/sangre , Femenino , Galectinas/inmunología , Humanos , Masculino , Melanoma/sangre , Melanoma/patología , Células Madre Neoplásicas/inmunología , Receptores CCR7/inmunología
18.
Int J Biochem Cell Biol ; 40(5): 848-54, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17543573

RESUMEN

The early hematopoietic zinc finger protein/zinc finger protein 521 (EHZF/ZNF521) is a recently identified, 1131 amino-acid-long nuclear factor that contains 30 zinc fingers distributed in clusters throughout its sequence. A 13-AA motif, that binds to components of the nuclear remodelling and histone deacetylation (NuRD) complex and is conserved in several trascriptional co-repressors, is located at the amino-terminal end of the molecule. EHZF/ZNF521 expression is high in the most immature cells of the haematopoietic system and declines with differentiation. Its transcript is also abundant in brain, particularly in the cerebellum. Its murine counterpart, Evi3/Zfp521, is enriched in haematopoietic and neural stem cells, in cerebellar granule neuron precursors and in the developing striatum. Enforced expression of EHZF/ZNF521 in haematopoietic progenitors results in their expansion and in inhibition of differentiation. EHZF/ZNF521 is a member of the BMP signalling pathway and an inhibitor of the transcription factor OLF1/EBF1, implicated in the differentiation of neural progenitors and in the specification of the B-cell lineage. EHZF expression is observed in most acute myelogenous leukaemias and is particularly high in those with rearrangements of the MLL gene, where EHZF may contribute to the leukaemic phenotype. EHZF/ZNF521 is also abundant in medulloblastomas and other brain tumours. Taken together, the data available suggest a possible role for this factor in development, stem cell regulation and oncogenesis.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Madre/metabolismo , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Ratones , Neoplasias/etiología , Dedos de Zinc
19.
J Mol Med (Berl) ; 85(7): 707-21, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17571248

RESUMEN

The interleukin-2 is a cytokine that is essential for lymphocytic survival and function. Ectopic expression of the IL-2 receptor in epithelial tissues has been reported previously, although the functional significance of this expression is still being investigated. We provided novel structural and functional information on the expression of the IL-2 receptor in kidney cancer cells and in other normal and neoplastic human epithelial tissues. In A-498 kidney cancer cells, we showed that IL-2 binding to its own receptor triggers a signal transduction pathway leading to the inhibition of proliferation and apoptosis. We found that the inhibition of proliferation is associated with Erk1/2 dephosphorylation, whereas the survival signals appear to be mediated by Sgk1 activation. This investigation focuses on the IL-2 induced regulation of Sgk1 and describes a role of the IL-2 receptor and Sgk1 in the regulation of epithelial tumor cell death and survival.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas Inmediatas-Precoces/fisiología , Interleucina-2/fisiología , Neoplasias Renales/patología , Proteínas Serina-Treonina Quinasas/fisiología , Línea Celular Tumoral , Supervivencia Celular , Regulación de la Expresión Génica , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Neoplasias Renales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Interleucina-2/análisis , Transducción de Señal
20.
Proteomes ; 6(2)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584711

RESUMEN

Mitochondria are the organelles deputed to energy production, but they are also involved in carcinogenesis, cancer progression, and metastasis, playing a role in altered energy metabolism in cancer cells. Mitochondrial metabolism is connected with several mitochondrial pathways such as ROS signaling, Ca2+ homeostasis, mitophagy, and mitochondrial biogenesis. These pathways are merged in an interactive super-network that seems to play a crucial role in cancer. Germline mutations of the BRCA1 gene account for 5-10% of breast cancers and confer a risk of developing the disease 10- to 20-fold much higher than in non-carriers. By considering metabolic networks that could reconcile both genetic and non-genetic causal mechanisms in BRCA1 driven tumorigenesis, we herein based our study on the hypothesis that BRCA1 haploinsufficiency might drive metabolic rewiring in breast epithelial cells, acting as a push toward malignant transformation. Using 2D-DIGE we analyzed and compared the mitochondrial proteomic profile of sporadic breast cancer cell line (MCF7) and BRCA1 mutated breast cancer cell line (HCC1937). Image analysis was carried out with Decider Software, and proteins differentially expressed were identified by LC-MS/MS on a quadrupole-orbitrap mass spectrometer Q-Exactive. Ingenuity pathways analysis software was used to analyze the fifty-three mitochondrial proteins whose expression resulted significantly altered in response to BRCA1 mutation status. Mitochondrial Dysfunction and oxidative phosphorylation, and energy production and nucleic acid metabolism were, respectively, the canonical pathway and the molecular function mainly affected. Western blotting analysis was done to validate the expression and the peculiar mitochondrial compartmentalization of specific proteins such us HSP60 and HIF-1α. Particularly intriguing is the correlation between BRCA1 mutation status and HIF-1α localization into the mitochondria in a BRCA1 dependent manner. Data obtained led us to hypothesize an interesting connection between BRCA1 and mitochondria pathways, capable to trigger metabolic changes, which, in turn, sustain the high energetic and anabolic requirements of the malignant phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA