Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792166

RESUMEN

Food-borne transmission is a recognized route for many viruses associated with gastrointestinal, hepatic, or neurological diseases. Therefore, it is essential to identify new bioactive compounds with broad-spectrum antiviral activity to exploit innovative solutions against these hazards. Recently, antimicrobial peptides (AMPs) have been recognized as promising antiviral agents. Indeed, while the antibacterial and antifungal effects of these molecules have been widely reported, their use as potential antiviral agents has not yet been fully investigated. Herein, the antiviral activity of previously identified or newly designed AMPs was evaluated against the non-enveloped RNA viruses, hepatitis A virus (HAV) and murine norovirus (MNV), a surrogate for human norovirus. Moreover, specific assays were performed to recognize at which stage of the viral infection cycle the peptides could function. The results showed that almost all peptides displayed virucidal effects, with about 90% of infectivity reduction in HAV or MNV. However, the decapeptide RiLK1 demonstrated, together with its antibacterial and antifungal properties, a notable reduction in viral infection for both HAV and MNV, possibly through direct interaction with viral particles causing their damage or hindering the recognition of cellular receptors. Hence, RiLK1 could represent a versatile antimicrobial agent effective against various foodborne pathogens including viruses, bacteria, and fungi.


Asunto(s)
Antivirales , Enfermedades Transmitidas por los Alimentos , Norovirus , Antivirales/farmacología , Antivirales/química , Animales , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/tratamiento farmacológico , Enfermedades Transmitidas por los Alimentos/virología , Norovirus/efectos de los fármacos , Humanos , Ratones , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Virus de la Hepatitis A/efectos de los fármacos , Virosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
2.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576174

RESUMEN

Antimicrobial peptides (AMPs) represent a skilled class of new antibiotics, due to their broad range of activity, rapid killing, and low bacterial resistance. Many efforts have been made to discover AMPs with improved performances, i.e., high antimicrobial activity, low cytotoxicity against human cells, stability against proteolytic degradation, and low costs of production. In the design of new AMPs, several physicochemical features, such as hydrophobicity, net positive charge, propensity to assume amphipathic conformation, and self-assembling properties, must be considered. Starting from the sequence of the dodecapeptide 1018-K6, we designed a new 10-aminoacid peptide, namely RiLK1, which is highly effective against both fungi and Gram-positive and -negative bacteria at low micromolar concentrations without causing human cell cytotoxicity. In order to find the structural reasons explaining the improved performance of RiLK1 versus 1018-K6, a comparative analysis of the two peptides was carried out with a combination of CD, NMR, and fluorescence spectroscopies, while their self-assembling properties were analyzed by optical and atomic force microscopies. Interestingly, the different spectroscopic and microscopic profiles exhibited by the two peptides, including the propensity of RiLK1 to adopt helix arrangements in contrast to 1018-K6, could explain the improved bactericidal, antifungal, and anti-biofilm activities shown by the new peptide against a panel of food pathogens.


Asunto(s)
Proteínas Citotóxicas Formadoras de Poros/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Proteínas Citotóxicas Formadoras de Poros/química , Espectrometría de Fluorescencia
3.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971824

RESUMEN

Antimicrobial peptides (AMPs) are excellent candidates to fight multi-resistant pathogens worldwide and are considered promising bio-preservatives to control microbial spoilage through food processing. To date, designing de novo AMPs with high therapeutic indexes, low-cost synthesis, high resistance, and bioavailability, remains a challenge. In this study, a novel decapeptide, named RiLK1, was rationally designed starting from the sequence of the previously characterized AMP 1018-K6, with the aim of developing short peptides, and promoting higher selectivity over mammalian cells, antibacterial activity, and structural resistance under different salt, pH, and temperature conditions. Interestingly, RiLK1 displayed a broad-spectrum of bactericidal activity against Gram-positive and Gram-negative bacteria, including multidrug resistant clinical isolates of Salmonella species, with Minimal Bactericidal Concentration (MBC) values in low micromolar range, and it was effective even against two fungal pathogens with no evidence of cytotoxicity on human keratinocytes and fibroblasts. Moreover, RiLK1-activated polypropylene films were revealed to efficiently prevent the growth of microbial spoilage, possibly improving the shelf life of fresh food products. These results suggested that de novo designed peptide RiLK1 could be the first candidate for the development of a promising class of decameric and multitask antimicrobial agents to overcome drug-resistance phenomena.


Asunto(s)
Antibacterianos , Oligopéptidos , Proteínas Citotóxicas Formadoras de Poros , Salmonella/crecimiento & desarrollo , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Fibroblastos/metabolismo , Humanos , Queratinocitos/metabolismo , Oligopéptidos/síntesis química , Oligopéptidos/química , Oligopéptidos/farmacología , Proteínas Citotóxicas Formadoras de Poros/síntesis química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Relación Estructura-Actividad
4.
Int J Mol Sci ; 20(3)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704080

RESUMEN

Food packaging is not only a simple protective barrier, but a real "active" component, which is expected to preserve food quality, safety and shelf-life. Therefore, the materials used for packaging production should show peculiar features and properties. Specifically, antimicrobial packaging has recently gained great attention with respect to both social and economic impacts. In this paper, the results obtained by using a polymer material functionalized by a small synthetic peptide as "active" packaging are reported. The surface of Polyethylene Terephthalate (PET), one of the most commonly used plastic materials in food packaging, was plasma-activated and covalently bio-conjugated to a bactenecin-derivative peptide named 1018K6, previously characterized in terms of antimicrobial and antibiofilm activities. The immobilization of the peptide occurred at a high yield and no release was observed under different environmental conditions. Moreover, preliminary data clearly demonstrated that the "active" packaging was able to significantly reduce the total bacterial count together with yeast and mold spoilage in food-dairy products. Finally, the functionalized-PET polymer showed stronger efficiency in inhibiting biofilm growth, using a Listeria monocytogenes strain isolated from food products. The use of these "active" materials would greatly decrease the risk of pathogen development and increase the shelf-life in the food industry, showing a real potential against a panel of microorganisms upon exposure to fresh and stored products, high chemical stability and re-use possibility.


Asunto(s)
Antibacterianos/farmacología , Péptidos/farmacología , Biopelículas/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Tereftalatos Polietilenos/química
5.
Int J Mol Sci ; 18(8)2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28757562

RESUMEN

The oxidative challenge represents an important factor affecting the adaptive strategies in Antarctic fish, but their impact on the protein degradation machinery still remains unclear. The previous analysis of the first 26S proteasome from the Antarctic red-blooded fish Trematomus bernacchii, evidenced improved antioxidant functions necessary to counteract the environmental pro-oxidant conditions. The purpose of this work was to carry out a study on 26S proteasomes from the temperate red-blooded Dicenthrarcus labrax and the icefish Chionodraco hamatus in comparison with the isoform already described from T. bernacchii, to better elucidate the cold-adapted physiological functions of this complex. Therefore, the 26S isoforms were isolated and the complementary DNAs (cDNAs) codifying the catalytic subunits were cloned. The biochemical characterization of Antarctic 26S proteasomes revealed their significantly higher structural stability and resistance to H2O2 with respect to that of the temperate counterpart, as also suggested by a comparative modeling analysis of the catalytic subunits. Moreover, in contrast to that observed in T. bernacchii, the 26S systems from C. hamatus and D. labrax were incapable to hydrolyze oxidized proteins in a ubiquitin-independent manner. Therefore, the 'uncommon' properties displayed by the Antarctic 26S proteasomes can mirror the impact exercised by evolutionary pressure in response to richly oxygenated environments.


Asunto(s)
Antioxidantes/metabolismo , Lubina/metabolismo , Perciformes/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Aclimatación , Animales , Regiones Antárticas , Antioxidantes/química , Lubina/genética , Clonación Molecular , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peróxido de Hidrógeno/farmacología , Modelos Moleculares , Perciformes/genética , Filogenia , Complejo de la Endopetidasa Proteasomal/química , Estabilidad Proteica , Estructura Secundaria de Proteína , Especies Reactivas de Oxígeno/metabolismo
6.
Front Microbiol ; 14: 1244325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869668

RESUMEN

Antimicrobial activity of many AMPs can be improved by lysine-to-arginine substitution due to a more favourable interaction of arginine guanidinium moiety with bacterial membranes. In a previous work, the structural and functional characterization of an amphipathic antimicrobial peptide named RiLK1, including lysine and arginine as the positively charged amino acids in its sequence, was reported. Specifically, RiLK1 retained its ß-sheet structure under a wide range of environmental conditions (temperature, pH, and ionic strength), and exhibited bactericidal activity against Gram-positive and Gram-negative bacteria and fungal pathogens with no evidence of toxicity on mammalian cells. To further elucidate the influence of a lysine-to-arginine replacement on RiLK1 conformational properties, antimicrobial activity and peptide-liposome interaction, a new RiLK1-derivative, named RiLK3, in which the lysine is replaced with an arginine residue, was projected and characterised in comparison with its parental compound. The results evidenced that lysine-to-arginine mutation not only did not assure an improvement in the antimicrobial potency of RiLK1 in terms of bactericidal, virucidal and fungicidal activities, but rather it was completely abolished against the hepatitis A virus. Therefore, RiLK1 exhibited a wide range of antimicrobial activity like other cationic peptides, although the exact mechanisms of action are not completely understood. Moreover, tryptophan fluorescence measurements confirmed that RiLK3 bound to negatively charged lipid vesicles with an affinity lower than that of RiLK1, although no substantial differences from the structural and self-assembled point of view were evidenced. Therefore, our findings imply that antimicrobial efficacy and selectivity are affected by several complex and interrelated factors related to substitution of lysine with arginine, such as their relative proportion and position. In this context, this study could provide a better rationalisation for the optimization of antimicrobial peptide sequences, paving the way for the development of novel AMPs with broad applications.

7.
Methods Mol Biol ; 2498: 413-424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35727561

RESUMEN

The bifunctional enzyme acylpeptide hydrolase (APEH) is involved in important metabolic processes both as an exopeptidase and as an endopeptidase. Hence, the growing interest in the study of this protein and the need to set up in vitro assays for its characterization. This chapter describes two in vitro assays able to detect the activities of APEH, one for the exopeptidase activity and one for the endopeptidase activity. In particular, these assays have been set up on the two APEH isoforms from Antarctic fish, characterized by a distinct functionality and marked exo- and endopeptidase activities.


Asunto(s)
Peces , Péptido Hidrolasas , Animales , Regiones Antárticas , Endopeptidasas/metabolismo , Exopeptidasas/metabolismo , Peces/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis
8.
Ital J Food Saf ; 11(3): 10466, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36120529

RESUMEN

Fresh fishery products are highly perishable foods mainly due to their high-water content and high level of pH which act as promoters of spoilage processes. In these matrices, the deterioration phenomena are the result of the action of oxidative, and enzymatic processes due in part to the presence of specific microorganisms. Indeed, the microbial communities responsible for spoilage are a small fraction of the flora detectable in the fish and are known as specific spoilage organisms (SSOs). In the last decades, the scientific community has worked to achieve the ambitious goal of reducing the impact of microbial deterioration on food losses through innovative solutions, including antimicrobial packaging. The goal of this study was to evaluate the efficacy of an active polypropylene (PP)- based packaging functionalized with the antimicrobial peptide 1018K6 to extend the shelf life of dolphinfish burgers (Coryphaena hippurus) by evaluating its effect on sensorial and microbiological profile. The microbiological results showed an evident antimicrobial activity of the active packaging against hygiene indicator microorganisms and SSOs, recording a reduction of about 1 Log (CFU/g) of their concentrations compared to those of the control groups. Furthermore, a significant influence of functionalized packaging on the organoleptic characteristics was noted, accentuating the differences in freshness between the two experimental groups. This work confirmed the hypothesis of considering antimicrobial packaging as a potential tool capable of slowing down surface microbial replication and, therefore, extending the shelf-life and improving the health and hygiene aspect of fresh fish products.

9.
Foods ; 11(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35159493

RESUMEN

Fresh fish are highly perishable, owing mainly to their moisture content, high amount of free amino acids and polyunsaturated fatty acids. Microorganisms and chemical reactions cause the spoilage, leading to loss in quality, human health risks and a market value reduction. Therefore, the fishing industry has always been willing to explore new technologies to increase quality and safety of fish products through a decrease of the microbiological and biochemical damage. In this context, antimicrobial active packaging is one such promising solution to meet consumer demands. The main objective of this study was to evaluate the effects of an active polypropylene-based packaging functionalized with the antimicrobial peptide 1018K6 on microbial growth, physicochemical properties and the sensory attributes of raw salmon fillets. The results showed that application of 1018K6-polypropylene strongly inhibited the microbial growth of both pathogenic and specific spoilage organisms (SSOs) on fish fillets after 7 days. Moreover, salmon also kept its freshness as per volatile chemical spoilage indices (CSIs) during storage. Similar results were obtained on hamburgers of Sarda sarda performing the same analyses. This work provides further evidence that 1018K6-polymers have good potential as antimicrobial packaging for application in the food market to enhance quality and preserve the sensorial properties of fish products.

10.
Microbiol Res ; 221: 60-69, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30825942

RESUMEN

Bacteria isolated from different environments can be exploited for biocontrol purposes by the identification of the molecules involved in the antifungal activity. The present study was aimed at investigating antifungal protein compounds purified from a previously identified plant growth promoting bacterium, Pseudomonas protegens N isolated from agricultural land in northern Algeria. Therefore, a novel protein was purified by chromatographic and ultrafiltration steps and its antifungal activity together with growth-inhibition mechanism was evaluated against different fungi by plate-based assays. In addition, stereomicroscopy and transmission electron microscopy (TEM) was performed to explore the inhibition activity of the compound on spore germination processes. The protein, showing a molecular mass of about 100 kDa under native conditions, was revealed to be in the surface-membrane fraction and displayed an efficient activity against a variety of phytopathogenic fungi, being Alternaria the best target towards which it exhibited a marked fungicidal action and inhibition of spore germination. Moreover, the compound was able to significantly decrease fungal infection on tomato fruits producing also morphological aberrations on conidia. The obtained results suggested that the isolated compound could represent a promising agent for eco-friendly management of plant pathogens in agriculture.


Asunto(s)
Alternaria/crecimiento & desarrollo , Antifúngicos/farmacología , Agentes de Control Biológico/farmacología , Pseudomonas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Argelia , Alternaria/efectos de los fármacos , Solanum lycopersicum/microbiología , Pruebas de Sensibilidad Microbiana , Desarrollo de la Planta/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/microbiología , Pseudomonas/aislamiento & purificación , Rizosfera , Microbiología del Suelo , Esporas Fúngicas/efectos de los fármacos
11.
Front Microbiol ; 10: 2963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993029

RESUMEN

Fresh products are characterized by reduced shelf-life because they are an excellent growth medium for a lot of microorganisms. Therefore, the microbial spoilage causing significant food supply losses has become an enormous economic and ethical problem worldwide. The antimicrobial packaging is offering a viable solution to tackle this economic and safety issue by extending the shelf-life and improving the quality and safety of fresh products. The goal of this study was to investigate the effects of a food contact surface of polyethylene terephthalate (PET) functionalized with the previously characterized antimicrobial peptide mitochondrial-targeted peptide 1 (MTP1), in reducing the microbial population related to spoilage and in providing the shelf-life stability of different types of fresh foods such as ricotta cheese and buffalo meat. Modified polymers were characterized concerning the procedure of plasma-activation by water contact angle measurements and Fourier transform infrared spectroscopy measurements in attenuated total reflection mode (ATR-FTIR). Results showed that the MTP1-PETs provided a strong antimicrobial effect for spoilage microorganisms with no cytotoxicity on a human colon cancer cell line. Finally, the activated polymers revealed high storage stability and good reusability. This study provided valuable information to develop alternative antimicrobial packaging for enhancing and extending the microbial quality and safety of perishable foods during storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA