Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941598

RESUMEN

T-prolymphocytic leukemia (T-PLL) is a mature T-cell neoplasm associated with marked chemotherapy resistance and continued poor clinical outcomes. Current treatments, i.e. the CD52-antibody alemtuzumab, offer transient responses, with relapses being almost inevitable without consolidating allogeneic transplantation. Recent more detailed concepts of T-PLL's pathobiology fostered the identification of actionable vulnerabilities: (i) altered epigenetics, (ii) defective DNA damage responses, (iii) aberrant cell-cycle regulation, and (iv) deregulated pro-survival pathways, including TCR and JAK/STAT signaling. To further develop related pre-clinical therapeutic concepts, we studied inhibitors of (H)DACs, BCL2, CDK, MDM2, and clas-sical cytostatics, utilizing (a) single-agent and combinatorial compound testing in 20 well-characterized and molecularly-profiled primary T-PLL (validated by additional 42 cases), and (b) 2 independent murine models (syngeneic transplants and patient-derived xenografts). Overall, the most efficient/selective single-agents and combinations (in vitro and in mice) in-cluded Cladribine, Romidepsin ((H)DAC), Venetoclax (BCL2), and/or Idasanutlin (MDM2). Cladribine sensitivity correlated with expression of its target RRM2. T-PLL cells revealed low overall apoptotic priming with heterogeneous dependencies on BCL2 proteins. In additional 38 T-cell leukemia/lymphoma lines, TP53 mutations were associated with resistance towards MDM2 inhibitors. P53 of T-PLL cells, predominantly in wild-type configuration, was amenable to MDM2 inhibition, which increased its MDM2-unbound fraction. This facilitated P53 activa-tion and down-stream signals (including enhanced accessibility of target-gene chromatin re-gions), in particular synergy with insults by Cladribine. Our data emphasize the therapeutic potential of pharmacologic strategies to reinstate P53-mediated apoptotic responses. The identified efficacies and their synergies provide an informative background on compound and patient selection for trial designs in T-PLL.

2.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38445722

RESUMEN

MOTIVATION: Identification of genomic, molecular and clinical markers prognostic of patient survival is important for developing personalized disease prevention, diagnostic and treatment approaches. Modern omics technologies have made it possible to investigate the prognostic impact of markers at multiple molecular levels, including genomics, epigenomics, transcriptomics, proteomics and metabolomics, and how these potential risk factors complement clinical characterization of patient outcomes for survival prognosis. However, the massive sizes of the omics datasets, along with their correlation structures, pose challenges for studying relationships between the molecular information and patients' survival outcomes. RESULTS: We present a general workflow for survival analysis that is applicable to high-dimensional omics data as inputs when identifying survival-associated features and validating survival models. In particular, we focus on the commonly used Cox-type penalized regressions and hierarchical Bayesian models for feature selection in survival analysis, which are especially useful for high-dimensional data, but the framework is applicable more generally. AVAILABILITY AND IMPLEMENTATION: A step-by-step R tutorial using The Cancer Genome Atlas survival and omics data for the execution and evaluation of survival models has been made available at https://ocbe-uio.github.io/survomics.


Asunto(s)
Genómica , Proteómica , Humanos , Teorema de Bayes , Genómica/métodos , Genoma , Epigenómica , Metabolómica
3.
Bioinformatics ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936341

RESUMEN

SUMMARY: The limited resolution of spatial transcriptomics (ST) assays in the past has led to the development of cell type annotation methods that separate the convolved signal based on available external atlas data. In light of the rapidly increasing resolution of the ST assay technologies, we made available and investigated the performance of a deconvolution-free marker-based cell annotation method called scType. In contrast to existing methods, the spatial application of scType does not require computationally strenuous deconvolution, nor large single-cell reference atlases. We show that scType enables ultra-fast and accurate identification of abundant cell types from ST data, especially when a large enough panel of genes is detected. Examples of such assays are Visium and Slide-seq, which currently offer the best trade-off between high resolution and number of genes detected by the assay for cell type annotation. AVAILABILITY AND IMPLEMENTATION: scType source R and python codes for spatial data are openly available in GitHub (https://github.com/kris-nader/sp-type or https://github.com/kris-nader/sc-type-py). Step-by-step tutorials for R and python spatial data analysis can be found in https://github.com/kris-nader/sp-type and https://github.com/kris-nader/sc-type-py/blob/main/spatial_tutorial.md, respectively. SUPPLEMENTARY INFORMATION: Supplementary information are available at Bioinformatics online.

4.
Nucleic Acids Res ; 51(W1): W57-W61, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37178002

RESUMEN

Functional precision medicine (fPM) offers an exciting, simplified approach to finding the right applications for existing molecules and enhancing therapeutic potential. Integrative and robust tools ensuring high accuracy and reliability of the results are critical. In response to this need, we previously developed Breeze, a drug screening data analysis pipeline, designed to facilitate quality control, dose-response curve fitting, and data visualization in a user-friendly manner. Here, we describe the latest version of Breeze (release 2.0), which implements an array of advanced data exploration capabilities, providing users with comprehensive post-analysis and interactive visualization options that are essential for minimizing false positive/negative outcomes and ensuring accurate interpretation of drug sensitivity and resistance data. The Breeze 2.0 web-tool also enables integrative analysis and cross-comparison of user-uploaded data with publicly available drug response datasets. The updated version incorporates new drug quantification metrics, supports analysis of both multi-dose and single-dose drug screening data and introduces a redesigned, intuitive user interface. With these enhancements, Breeze 2.0 is anticipated to substantially broaden its potential applications in diverse domains of fPM.


Asunto(s)
Evaluación Preclínica de Medicamentos , Programas Informáticos , Gráficos por Computador , Reproducibilidad de los Resultados , Interfaz Usuario-Computador , Internet
5.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36305426

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Mapas de Interacción de Proteínas , Proteínas Nucleares , Factores de Transcripción , Antivirales/farmacología , Ubiquitina Tiolesterasa , Proteínas de Ciclo Celular
6.
PLoS Comput Biol ; 19(3): e1010333, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897911

RESUMEN

In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its clinical implementation, we propose an optimized L0-pseudonorm approach to learn sparse solutions in multivariable regression. The model sparsity is maintained by restricting the number of nonzero coefficients in the model with a cardinality constraint, which makes the optimization problem NP-hard. In addition, we generalize the cardinality constraint for grouped feature selection, which makes it possible to identify key sets of predictors that may be measured together in a kit in clinical practice. We demonstrate the operation of our cardinality constraint-based feature subset selection method, named OSCAR, in the context of prognostic prediction of prostate cancer patients, where it enables one to determine the key explanatory predictors at different levels of model sparsity. We further explore how the model sparsity affects the model accuracy and implementation cost. Lastly, we demonstrate generalization of the presented methodology to high-dimensional transcriptomics data.


Asunto(s)
Algoritmos , Neoplasias de la Próstata , Masculino , Humanos , Pronóstico , Perfilación de la Expresión Génica , Neoplasias de la Próstata/genética
7.
Nucleic Acids Res ; 50(W1): W739-W743, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580060

RESUMEN

SynergyFinder (https://synergyfinder.fimm.fi) is a free web-application for interactive analysis and visualization of multi-drug combination response data. Since its first release in 2017, SynergyFinder has become a popular tool for multi-dose combination data analytics, partly because the development of its functionality and graphical interface has been driven by a diverse user community, including both chemical biologists and computational scientists. Here, we describe the latest upgrade of this community-effort, SynergyFinder release 3.0, introducing a number of novel features that support interactive multi-sample analysis of combination synergy, a novel consensus synergy score that combines multiple synergy scoring models, and an improved outlier detection functionality that eliminates false positive results, along with many other post-analysis options such as weighting of synergy by drug concentrations and distinguishing between different modes of synergy (potency and efficacy). Based on user requests, several additional improvements were also implemented, including new data visualizations and export options for multi-drug combinations. With these improvements, SynergyFinder 3.0 supports robust identification of consistent combinatorial synergies for multi-drug combinatorial discovery and clinical translation.


Asunto(s)
Descubrimiento de Drogas , Programas Informáticos , Consenso , Combinación de Medicamentos
8.
Br J Cancer ; 129(8): 1212-1224, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454231

RESUMEN

Immune checkpoint therapies (ICT) can reinvigorate the effector functions of anti-tumour T cells, improving cancer patient outcomes. Anti-tumour T cells are initially formed during their first contact (priming) with tumour antigens by antigen-presenting cells (APCs). Unfortunately, many patients are refractory to ICT because their tumours are considered to be 'cold' tumours-i.e., they do not allow the generation of T cells (so-called 'desert' tumours) or the infiltration of existing anti-tumour T cells (T-cell-excluded tumours). Desert tumours disturb antigen processing and priming of T cells by targeting APCs with suppressive tumour factors derived from their genetic instabilities. In contrast, T-cell-excluded tumours are characterised by blocking effective anti-tumour T lymphocytes infiltrating cancer masses by obstacles, such as fibrosis and tumour-cell-induced immunosuppression. This review delves into critical mechanisms by which cancer cells induce T-cell 'desertification' and 'exclusion' in ICT refractory tumours. Filling the gaps in our knowledge regarding these pro-tumoral mechanisms will aid researchers in developing novel class immunotherapies that aim at restoring T-cell generation with more efficient priming by APCs and leukocyte tumour trafficking. Such developments are expected to unleash the clinical benefit of ICT in refractory patients.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Conservación de los Recursos Naturales , Neoplasias/terapia , Antígenos de Neoplasias , Inmunoterapia
9.
Br J Cancer ; 128(4): 678-690, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36476658

RESUMEN

Many efforts are underway to develop novel therapies against the aggressive high-grade serous ovarian cancers (HGSOCs), while our understanding of treatment options for low-grade (LGSOC) or mucinous (MUCOC) of ovarian malignancies is not developing as well. We describe here a functional precision oncology (fPO) strategy in epithelial ovarian cancers (EOC), which involves high-throughput drug testing of patient-derived ovarian cancer cells (PDCs) with a library of 526 oncology drugs, combined with genomic and transcriptomic profiling. HGSOC, LGSOC and MUCOC PDCs had statistically different overall drug response profiles, with LGSOCs responding better to targeted inhibitors than HGSOCs. We identified several subtype-specific drug responses, such as LGSOC PDCs showing high sensitivity to MDM2, ERBB2/EGFR inhibitors, MUCOC PDCs to MEK inhibitors, whereas HGSOCs showed strongest effects with CHK1 inhibitors and SMAC mimetics. We also explored several drug combinations and found that the dual inhibition of MEK and SHP2 was synergistic in MAPK-driven EOCs. We describe a clinical case study, where real-time fPO analysis of samples from a patient with metastatic, chemorefractory LGSOC with a CLU-NRG1 fusion guided clinical therapy selection. fPO-tailored therapy with afatinib, followed by trastuzumab and pertuzumab, successfully reduced tumour burden and blocked disease progression over a five-year period. In summary, fPO is a powerful approach for the identification of systematic drug response differences across EOC subtypes, as well as to highlight patient-specific drug regimens that could help to optimise therapies to individual patients in the future.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Medicina de Precisión , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario/patología , Cistadenocarcinoma Seroso/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos
10.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34343245

RESUMEN

Each patient's cancer consists of multiple cell subpopulations that are inherently heterogeneous and may develop differing phenotypes such as drug sensitivity or resistance. A personalized treatment regimen should therefore target multiple oncoproteins in the cancer cell populations that are driving the treatment resistance or disease progression in a given patient to provide maximal therapeutic effect, while avoiding severe co-inhibition of non-malignant cells that would lead to toxic side effects. To address the intra- and inter-tumoral heterogeneity when designing combinatorial treatment regimens for cancer patients, we have implemented a machine learning-based platform to guide identification of safe and effective combinatorial treatments that selectively inhibit cancer-related dysfunctions or resistance mechanisms in individual patients. In this case study, we show how the platform enables prediction of cancer-selective drug combinations for patients with high-grade serous ovarian cancer using single-cell imaging cytometry drug response assay, combined with genome-wide transcriptomic and genetic profiles. The platform makes use of drug-target interaction networks to prioritize those combinations that warrant further preclinical testing in scarce patient-derived primary cells. During the case study in ovarian cancer patients, we investigated (i) the relative performance of various ensemble learning algorithms for drug response prediction, (ii) the use of matched single-cell RNA-sequencing data to deconvolute cell population-specific transcriptome profiles from bulk RNA-seq data, (iii) and whether multi-patient or patient-specific predictive models lead to better predictive accuracy. The general platform and the comparison results are expected to become useful for future studies that use similar predictive approaches also in other cancer types.


Asunto(s)
Neoplasias Ováricas/terapia , Algoritmos , Terapia Combinada , Femenino , Humanos , Células Tumorales Cultivadas
11.
BMC Bioinformatics ; 23(1): 188, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585485

RESUMEN

BACKGROUND: Identifying associations among biological variables is a major challenge in modern quantitative biological research, particularly given the systemic and statistical noise endemic to biological systems. Drug sensitivity data has proven to be a particularly challenging field for identifying associations to inform patient treatment. RESULTS: To address this, we introduce two semi-parametric variations on the commonly used concordance index: the robust concordance index and the kernelized concordance index (rCI, kCI), which incorporate measurements about the noise distribution from the data. We demonstrate that common statistical tests applied to the concordance index and its variations fail to control for false positives, and introduce efficient implementations to compute p-values using adaptive permutation testing. We then evaluate the statistical power of these coefficients under simulation and compare with Pearson and Spearman correlation coefficients. Finally, we evaluate the various statistics in matching drugs across pharmacogenomic datasets. CONCLUSIONS: We observe that the rCI and kCI are better powered than the concordance index in simulation and show some improvement on real data. Surprisingly, we observe that the Pearson correlation was the most robust to measurement noise among the different metrics.


Asunto(s)
Modelos Estadísticos , Simulación por Computador , Evaluación Preclínica de Medicamentos , Humanos
12.
Brief Bioinform ; 21(1): 211-220, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30566623

RESUMEN

Knowledge of the full target space of drugs (or drug-like compounds) provides important insights into the potential therapeutic use of the agents to modulate or avoid their various on- and off-targets in drug discovery and precision medicine. However, there is a lack of consolidated databases and associated data exploration tools that allow for systematic profiling of drug target-binding potencies of both approved and investigational agents using a network-centric approach. We recently initiated a community-driven platform, Drug Target Commons (DTC), which is an open-data crowdsourcing platform designed to improve the management, reproducibility and extended use of compound-target bioactivity data for drug discovery and repurposing, as well as target identification applications. In this work, we demonstrate an integrated use of the rich bioactivity data from DTC and related drug databases using Drug Target Profiler (DTP), an open-source software and web tool for interactive exploration of drug-target interaction networks. DTP was designed for network-centric modeling of mode-of-action of multi-targeting anticancer compounds, especially for precision oncology applications. DTP enables users to construct an interaction network based on integrated bioactivity data across selected chemical compounds and their protein targets, further customizable using various visualization and filtering options, as well as cross-links to several drug and protein databases to provide comprehensive information of the network nodes and interactions. We demonstrate here the operation of the DTP tool and its unique features by several use cases related to both drug discovery and drug repurposing applications, using examples of anticancer drugs with shared target profiles. DTP is freely accessible at http://drugtargetprofiler.fimm.fi/.

13.
Bioinformatics ; 37(Suppl_1): i93-i101, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34252952

RESUMEN

MOTIVATION: Combination therapies have emerged as a powerful treatment modality to overcome drug resistance and improve treatment efficacy. However, the number of possible drug combinations increases very rapidly with the number of individual drugs in consideration, which makes the comprehensive experimental screening infeasible in practice. Machine-learning models offer time- and cost-efficient means to aid this process by prioritizing the most effective drug combinations for further pre-clinical and clinical validation. However, the complexity of the underlying interaction patterns across multiple drug doses and in different cellular contexts poses challenges to the predictive modeling of drug combination effects. RESULTS: We introduce comboLTR, highly time-efficient method for learning complex, non-linear target functions for describing the responses of therapeutic agent combinations in various doses and cancer cell-contexts. The method is based on a polynomial regression via powerful latent tensor reconstruction. It uses a combination of recommender system-style features indexing the data tensor of response values in different contexts, and chemical and multi-omics features as inputs. We demonstrate that comboLTR outperforms state-of-the-art methods in terms of predictive performance and running time, and produces highly accurate results even in the challenging and practical inference scenario where full dose-response matrices are predicted for completely new drug combinations with no available combination and monotherapy response measurements in any training cell line. AVAILABILITY AND IMPLEMENTATION: comboLTR code is available at https://github.com/aalto-ics-kepaco/ComboLTR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Neoplasias , Algoritmos , Línea Celular , Combinación de Medicamentos , Humanos
14.
Mol Syst Biol ; 17(3): e9526, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33750001

RESUMEN

Molecular and functional profiling of cancer cell lines is subject to laboratory-specific experimental practices and data analysis protocols. The current challenge therefore is how to make an integrated use of the omics profiles of cancer cell lines for reliable biological discoveries. Here, we carried out a systematic analysis of nine types of data modalities using meta-analysis of 53 omics studies across 12 research laboratories for 2,018 cell lines. To account for a relatively low consistency observed for certain data modalities, we developed a robust data integration approach that identifies reproducible signals shared among multiple data modalities and studies. We demonstrated the power of the integrative analyses by identifying a novel driver gene, ECHDC1, with tumor suppressive role validated both in breast cancer cells and patient tumors. The multi-modal meta-analysis approach also identified synthetic lethal partners of cancer drivers, including a co-dependency of PTEN deficient endometrial cancer cells on RNA helicases.


Asunto(s)
Genes Supresores de Tumor , Genómica , Algoritmos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Epistasis Genética , Femenino , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados , Mutaciones Letales Sintéticas
15.
Blood ; 135(9): 597-609, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31830245

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Resistencia a Antineoplásicos/inmunología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Linfocitos T Citotóxicos/inmunología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Pruebas Inmunológicas de Citotoxicidad/métodos , Humanos , Activación de Linfocitos/inmunología , Linfoma de Células B Grandes Difuso/inmunología , Receptores Quiméricos de Antígenos
16.
J Theor Biol ; 545: 111147, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35489642

RESUMEN

Tumors consist of heterogeneous cell subpopulations that may develop differing phenotypes, such as increased cell growth, metastatic potential and treatment sensitivity or resistance. To study the dynamics of cancer development at a single-cell level, we model the tumor microenvironment as a metapopulation, in which habitat patches correspond to possible sites for cell subpopulations. Cancer cells may emigrate into dispersal pool (e.g. circulation system) and spread to new sites (i.e. metastatic disease). In the patches, cells divide and new variants may arise, possibly leading into an invasion provided the aberration promotes the cell growth. To study such adaptive landscape of cancer ecosystem, we consider various evolutionary strategies (phenotypes), such as emigration and angiogenesis, which are important determinants during early stages of tumor development. We use the metapopulation fitness of new variants to investigate how these strategies evolve through natural selection and disease progression. We further study various treatment effects and investigate how different therapy regimens affect the evolution of the cell populations. These aspects are relevant, for example, when examining the dynamic process of a benign tumor becoming cancerous, and what is the best treatment strategy during the early stages of cancer development. It is shown that positive angiogenesis promotes cancer cell growth in the absence of anti-angiogenic treatment, and that the anti-angiogenic treatment reduces the need of cytotoxic treatment when used in a combination. Interestingly, the model predicts that treatment resistance might become a favorable quality to cancer cells when the anti-angiogenic treatment is intensive enough. Thus, the optimal treatment dosage should remain below a patient-specific level to avoid treatment resistance.


Asunto(s)
Neoplasias , Microambiente Tumoral , Ecosistema , Emigración e Inmigración , Humanos , Inmunoterapia , Modelos Biológicos , Neoplasias/terapia , Neovascularización Patológica , Dinámica Poblacional
17.
Nucleic Acids Res ; 48(W1): W488-W493, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32246720

RESUMEN

SynergyFinder (https://synergyfinder.fimm.fi) is a stand-alone web-application for interactive analysis and visualization of drug combination screening data. Since its first release in 2017, SynergyFinder has become a widely used web-tool both for the discovery of novel synergistic drug combinations in pre-clinical model systems (e.g. cell lines or primary patient-derived cells), and for better understanding of mechanisms of combination treatment efficacy or resistance. Here, we describe the latest version of SynergyFinder (release 2.0), which has extensively been upgraded through the addition of novel features supporting especially higher-order combination data analytics and exploratory visualization of multi-drug synergy patterns, along with automated outlier detection procedure, extended curve-fitting functionality and statistical analysis of replicate measurements. A number of additional improvements were also implemented based on the user requests, including new visualization and export options, updated user interface, as well as enhanced stability and performance of the web-tool. With these improvements, SynergyFinder 2.0 is expected to greatly extend its potential applications in various areas of multi-drug combinatorial screening and precision medicine.


Asunto(s)
Sinergismo Farmacológico , Quimioterapia Combinada , Programas Informáticos , Gráficos por Computador
18.
J Biol Chem ; 295(13): 4194-4211, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32071079

RESUMEN

Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.


Asunto(s)
Autoantígenos/genética , Hidrolasas de Éster Carboxílico/genética , Proteínas de Unión al ADN/genética , Chaperonas de Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteína Fosfatasa 2/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Lámina Nuclear/efectos de los fármacos , Lámina Nuclear/genética , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 2/genética , Proteoma/efectos de los fármacos , Proto-Oncogenes Mas , ARN Interferente Pequeño/genética , Biología de Sistemas
19.
Artículo en Inglés | MEDLINE | ID: mdl-33468464

RESUMEN

Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses. In this report, we demonstrate that arbidol, an approved influenza antiviral previously shown to inhibit EBOV, LASV, and many other viruses, inhibits murine leukemia virus (MLV) reporter viruses pseudotyped with the fusion glycoproteins (GPs) of other arenaviruses (Junin virus [JUNV], lymphocytic choriomeningitis virus [LCMV], and Pichinde virus [PICV]). Arbidol and other approved drugs, including aripiprazole, amodiaquine, sertraline, and niclosamide, also inhibit infection of cells by infectious PICV, and arbidol, sertraline, and niclosamide inhibit infectious LASV. Combining arbidol with aripiprazole or sertraline results in the synergistic suppression of LASV and JUNV GP-bearing pseudoviruses. This proof-of-concept study shows that arenavirus infection in vitro can be synergistically inhibited by combinations of approved drugs. This approach may lead to a proactive strategy with which to prepare for and control known and new arenavirus outbreaks.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Arenaviridae/tratamiento farmacológico , Arenavirus/efectos de los fármacos , Administración Oral , Animales , Infecciones por Arenaviridae/virología , Línea Celular , Chlorocebus aethiops , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Células HEK293 , Humanos , Ratones , Prueba de Estudio Conceptual , Células Vero
20.
Bioinformatics ; 36(11): 3602-3604, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32119072

RESUMEN

SUMMARY: High-throughput screening (HTS) enables systematic testing of thousands of chemical compounds for potential use as investigational and therapeutic agents. HTS experiments are often conducted in multi-well plates that inherently bear technical and experimental sources of error. Thus, HTS data processing requires the use of robust quality control procedures before analysis and interpretation. Here, we have implemented an open-source analysis application, Breeze, an integrated quality control and data analysis application for HTS data. Furthermore, Breeze enables a reliable way to identify individual drug sensitivity and resistance patterns in cell lines or patient-derived samples for functional precision medicine applications. The Breeze application provides a complete solution for data quality assessment, dose-response curve fitting and quantification of the drug responses along with interactive visualization of the results. AVAILABILITY AND IMPLEMENTATION: The Breeze application with video tutorial and technical documentation is accessible at https://breeze.fimm.fi; the R source code is publicly available at https://github.com/potdarswapnil/Breeze under GNU General Public License v3.0. CONTACT: swapnil.potdar@helsinki.fi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Análisis de Datos , Programas Informáticos , Evaluación Preclínica de Medicamentos , Humanos , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA