Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928498

RESUMEN

Extensive evidence supports the connection between obesity-induced inflammation and the heightened expression of IL-6 adipose tissues. However, the mechanism underlying the IL-6 exacerbation in the adipose tissue remains unclear. There is general agreement that TNF-α and stearate concentrations are mildly elevated in adipose tissue in the state of obesity. We hypothesize that TNF-α and stearate co-treatment induce the increased expression of IL-6 in mouse adipocytes. We therefore aimed to determine IL-6 gene expression and protein production by TNF-α/stearate treated adipocytes and investigated the mechanism involved. To test our hypothesis, 3T3-L1 mouse preadipocytes were treated with TNF-α, stearate, or TNF-α/stearate. IL-6 gene expression was assessed by quantitative real-time qPCR. IL-6 protein production secreted in the cell culture media was determined by ELISA. Acetylation of histone was analyzed by Western blotting. Il6 region-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac) was determined by ChIP-qPCR. 3T3-L1 mouse preadipocytes were co-challenged with TNF-α and stearate for 24 h, which led to significantly increased IL-6 gene expression (81 ± 2.1 Fold) compared to controls stimulated with either TNF-α (38 ± 0.5 Fold; p = 0.002) or stearate (56 ± 2.0 Fold; p = 0.013). As expected, co-treatment of adipocytes with TNF-α and stearate significantly increased protein production (338 ± 11 pg/mL) compared to controls stimulated with either TNF-α (28 ± 0.60 pg/mL; p = 0.001) or stearate (53 ± 0.20 pg/mL, p = 0.0015). Inhibition of histone acetyltransferases (HATs) with anacardic acid or curcumin significantly reduced the IL-6 gene expression and protein production by adipocytes. Conversely, TSA-induced acetylation substituted the stimulatory effect of TNF-α or stearate in their synergistic interaction for driving IL-6 gene expression and protein production. Mechanistically, TNF-α/stearate co-stimulation increased the promoter-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac), rendering a transcriptionally permissive state that favored IL-6 expression at the transcriptional and translational levels. Our data represent a TNF-α/stearate cooperativity model driving IL-6 expression in 3T3-L1 cells via the H3K9/18Ac-dependent mechanism, with implications for adipose IL-6 exacerbations in obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Histonas , Interleucina-6 , Factor de Necrosis Tumoral alfa , Animales , Ratones , Acetilación , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ácidos Esteáricos/farmacología , Ácidos Esteáricos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894865

RESUMEN

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Estrés del Retículo Endoplásmico , Glucosa , Inflamación , FN-kappa B/metabolismo , Obesidad , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
3.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299302

RESUMEN

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Asunto(s)
Acetatos/farmacología , Quimiocina CCL2/biosíntesis , Ácidos Grasos Volátiles/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Acetatos/administración & dosificación , Quimiocina CCL2/genética , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Volátiles/administración & dosificación , Humanos , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Monocitos/inmunología , FN-kappa B/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células THP-1 , Triazenos/farmacología , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/farmacología
4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638857

RESUMEN

IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.


Asunto(s)
Quimiocina CCL2/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Peróxido de Hidrógeno/farmacología , Interleucina-8/genética , Monocitos/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Tejido Adiposo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Quimiocina CCL2/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-8/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1
5.
Emerg Infect Dis ; 25(12)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31742530

RESUMEN

A high percentage of camel handlers in Saudi Arabia are seropositive for Middle East respiratory syndrome coronavirus. We found that 12/100 camel handlers and their family members in Pakistan, a country with extensive camel MERS-CoV infection, were seropositive, indicating that MERS-CoV infection of these populations extends beyond the Arabian Peninsula.


Asunto(s)
Camelus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Familia , Agricultores , Coronavirus del Síndrome Respiratorio de Oriente Medio , Adolescente , Adulto , Anciano , Animales , Niño , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/transmisión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Pakistán/epidemiología , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Adulto Joven
6.
Cell Physiol Biochem ; 52(2): 212-224, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30816669

RESUMEN

BACKGROUND/AIMS: MIP-1α (macrophage inflammatory protein 1α)/CCL3 chemokine is associated with the adipose tissue inflammation in obesity. Both MIP-1α and free fatty acids are elevated in obesity/T2D. We asked if free fatty acid palmitate could modulate MIP1α expression in the human monocytic cells. METHODS: Human monocytic THP-1 cells and macrophages were stimulated with palmitate and TNF-α (positive control). MIP-1α expression was measured with real time RT-PCR, Flow Cytometry and ELISA. Signaling pathways were identified by using THP-1-XBlue™ cells, THP-1-XBlue™-defMyD cells, anti-TLR4 mAb and TLR4 siRNA. RESULTS: Our data show that palmitate induced significant increase in MIP1α production in monocytic THP-1 cells/macrophages. MIP-1α induction was significantly suppressed when cells were treated with anti-TLR4 antibody prior stimulation with palmitate. Using TLR4 siRNA, we further demonstrate that palmitate-induced MIP-1α expression in monocytic cells requires TLR4. Moreover, THP1 cells defective in MyD88, a major adaptor protein involved in TLR4 signaling, were unable to induce MIP-1α production in response to palmitate. Palmitate-induced MIP-1α expression was suppressed by inhibition of MAPK, NFkB and PI3K signaling pathways. In addition, palmitate-induced NF-κB/AP-1 activation was observed while production of MIP-1α. However, this activation of NF-κB/AP-1 was abrogated in MyD88 deficient cells. CONCLUSION: Overall, these results show that palmitate induces TLR4dependent MIP-1α expression requiring the MyD88 recruitment and activation of MAPK, NF-κB/AP-1 and PI3K signaling. It implies that the increased systemic levels of free fatty acid palmitate in obesity/T2D may contribute to metabolic inflammation through excessive production of MIP-1a.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/metabolismo , Monocitos/metabolismo , Ácido Palmítico/farmacología , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Macrófagos/patología , Monocitos/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Células THP-1 , Receptor Toll-Like 4/genética
7.
Cell Physiol Biochem ; 53(1): 1-18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31162913

RESUMEN

BACKGROUND/AIMS: Innate immune toll-like receptors (TLRs) are emerging as nutrient sensors. Oxidative stress in the adipose tissue in obesity acts as a critical early trigger of altered pathophysiology. TLR2/TLR4 adipose upregulation has been associated with insulin resistance in humans; however, it remains unclear whether oxidative stress can modulate expression of TLR2/4 and related immune-metabolic regulators (IRF3/5) in immune cells. We, therefore, assessed their expression along with proinflammatory cytokines in the human PBMC following induction of oxidative stress. METHODS: PBMC were isolated from blood of healthy donors using Ficoll-Paque method and cells were treated with H2O2 to induce oxidative stress. ROS was measured by DCFH-DA assay. Target gene and protein expression was determined using real-time RT-PCR and flow cytometry/confocal microscopy, respectively. TLR2/4 expression by H2O2 in presence of ROS-inhibitors or leptin/LPS/fatty acids was also assessed. Expression of phosphorylated/total ERK1/2, c-Jun, p38, and NF-κB was determined by western blotting. The data (mean±SEM) were compared using unpaired student's t-test or ANOVA; all P-values <0.05 were considered significant. RESULTS: TLR2/4 mRNA/protein expression was elevated by oxidative stress in PBMC compared to controls (P<0.001). This induction was abrogated by apocynin/N-acetyl cysteine treatments (P<0.01). H2O2-induced TLR2/4 gene expression was further enhanced by leptin, LPS, oleate, or palmitate (P<0.05). Oxidative stress also promoted expression of IRF3/5 and proinflammatory cytokines including IFN-γ, IL-1ß, IL-6, TNF-α, and MCP-1/CCL2. This oxidative stress in PBMC involved MAPK/NF-κB dependent signaling. CONCLUSION: Taken together, oxidative stress upregulates expression of TLR2/4, IRF3/5 and signature proinflammatory cytokines in PBMC, involving MAPK/NF-κB dependent signaling, all of which may have implications for metabolic inflammation.


Asunto(s)
Inflamación/genética , Estrés Oxidativo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Regulación hacia Arriba , Células Cultivadas , Humanos , Inflamación/metabolismo , Factor 3 Regulador del Interferón/genética , Factores Reguladores del Interferón/genética , Leucocitos Mononucleares/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31443599

RESUMEN

Elevated levels of IL-8 (CXCL8) in obesity have been linked with insulin resistance and type 2 diabetes (T2D). The mechanisms that lead to the profound production of IL-8 in obesity remains to be understood. TNF-α and saturated free fatty acids (FFAs) are increased in obese humans and correlate with insulin resistance. Hence, we sought to investigate whether the cooccurrence of TNF-α and FFAs led to increase the production of IL-8 by human monocytes. We found that co-stimulation of human monocytes with palmitate and TNF-α led to increased IL-8 production as compared to those stimulated with palmitate or TNF-α alone. The synergistic production of IL-8 by TNF-α/palmitate was suppressed by neutralizing anti- Toll like receptor 4 (TLR4) antibody and by genetic silencing of TLR4. Both MyD88-deficient and MyD88-competent cells responded comparably to TNF-α/Palmitate. However, TIR-domain-containing adapter-inducing interferon (TRIF) inhibition or interferon regulatory transcription factor 3 (IRF3) knockdown partly blocked the synergistic production of IL-8. Our human data show that increased adipose tissue TNF-α expression correlated positively with IL-8 expression (r = 0.49, P = 0.001). IL-8 and TNF-α correlated positively with macrophage markers including CD68, CD163 and CD86 in adipose tissue. These findings suggest that the signaling cross-talk between saturated fatty acid palmitate and TNF-α may be a key driver in obesity-associated chronic inflammation via an excessive production of IL-8.


Asunto(s)
Inflamación/metabolismo , Interleucina-8/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Palmitatos/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Línea Celular , Humanos , Persona de Mediana Edad , Sobrepeso/metabolismo , Transducción de Señal
9.
Cell Physiol Biochem ; 45(2): 572-590, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29428931

RESUMEN

BACKGROUND/AIMS: Metabolic diseases such as obesity and type-2 diabetes (T2D) are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR) such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. METHODS: TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC), or primary monocytes were treated with hydrogen peroxide (H2O2) for induction of reactive oxygen species (ROS)-mediated oxidative stress. Superoxide dismutase (SOD) activity was measured using a commercial kit. Data (mean±SEM) were compared using unpaired student's t-test and P<0.05 was considered significant. RESULTS: The adipose tissue TLR10 gene/protein expression was found to be significantly upregulated in obesity as well as T2D which correlated with body mass index (BMI). ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB)/mitogen activated protein kinase (MAPK) signaling as well as endoplasmic reticulum (ER) stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. CONCLUSION: Oxidative stress induces the expression of TLR10 which may represent an immune marker for metabolic inflammation.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Obesidad/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 10/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Anciano , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Peróxido de Hidrógeno/toxicidad , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Persona de Mediana Edad , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptor Toll-Like 10/metabolismo
10.
BMC Immunol ; 17(1): 33, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27671862

RESUMEN

BACKGROUND: Fetuin-A/AHSH is a novel hepatokine that acts as a vascular calcification inhibitor and as an endogenous TLR-4 ligand. Fetuin-A may act as a positive or negative acute phase protein (APP) in disease conditions. The relationship between circulatory fetuin-A and inflammatory biomarkers in type-2 diabetes (T2D) remains controversial. Therefore, the purpose of this study was to determine the plasma fetuin-A levels in 53 T2D (BMI = 29.7 ± 4.5 kg/m2) and 72 non-diabetic individuals (BMI = 28.2 ± 5.8 kg/m2) using premixed 38-plex MAP human cytokine/chemokine magnetic bead immunoassays and the data (mean ± SEM) were statistically analyzed to determine Pearson's correlation (r) between fetuin-A and detected analytes; P-values ≤0.05 were considered significant. RESULTS: The data show that plasma fetuin-A levels were comparable in both groups (P = 0.27) and in T2D individuals, fetuin-A associated negatively (P ≤ 0.05) with a large number of proinflammatory cytokines/chemokines and activation biomarkers including TNF-α, IFN-α2, IFN-γ, IL-1α, IL-1ß, IL-1RA, IL-3, IL-4, IL-7, IL-9, IL-12p40/p70, IL-15, CCL-2, CCL-4, CCL-11, CCL-22, CXCL-8, CX3CL-1, EFF-2, EGF, G-CSF, GM-CSF, GRO, sCD40L, and VEGF. In non-diabetics, fetuin-A also correlated positively with certain TH2 cytokines (IL-5, IL-13) and chemokines (CCL-3, CCL-5, CCL-7). Notably, in vitro fetuin-A production was significantly suppressed in HepG2 cells treated with TNF-α, IL-1ß, and IFN-γ which supported the clinical findings of a negative association between fetuin A and inflammatory mediators. CONCLUSIONS: The negative association between circulatory fetuin-A and systemic inflammatory mediators in T2D patients suggests that plasma fetuin-A may have predictive significance as a negative APP in metabolic disease.

11.
Front Public Health ; 11: 1115333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006572

RESUMEN

Introduction: Both obesity and a poor diet are considered major risk factors for triggering insulin resistance syndrome (IRS) and the development of type 2 diabetes mellitus (T2DM). Owing to the impact of low-carbohydrate diets, such as the keto diet and the Atkins diet, on weight loss in individuals with obesity, these diets have become an effective strategy for a healthy lifestyle. However, the impact of the ketogenic diet on IRS in healthy individuals of a normal weight has been less well researched. This study presents a cross-sectional observational study that aimed to investigate the effect of low carbohydrate intake in healthy individuals of a normal weight with regard to glucose homeostasis, inflammatory, and metabolic parameters. Methods: The study included 120 participants who were healthy, had a normal weight (BMI 25 kg/m2), and had no history of a major medical condition. Self-reported dietary intake and objective physical activity measured by accelerometry were tracked for 7 days. The participants were divided into three groups according to their dietary intake of carbohydrates: the low-carbohydrate (LC) group (those consuming <45% of their daily energy intake from carbohydrates), the recommended range of carbohydrate (RC) group (those consuming 45-65% of their daily energy intake from carbohydrates), and the high-carbohydrate (HC) group (those consuming more than 65% of their daily energy intake from carbohydrates). Blood samples were collected for the analysis of metabolic markers. HOMA of insulin resistance (HOMA-IR) and HOMA of ß-cell function (HOMA-ß), as well as C-peptide levels, were used for the evaluation of glucose homeostasis. Results: Low carbohydrate intake (<45% of total energy) was found to significantly correlate with dysregulated glucose homeostasis as measured by elevations in HOMA-IR, HOMA-ß% assessment, and C-peptide levels. Low carbohydrate intake was also found to be coupled with lower serum bicarbonate and serum albumin levels, with an increased anion gap indicating metabolic acidosis. The elevation in C-peptide under low carbohydrate intake was found to be positively correlated with the secretion of IRS-related inflammatory markers, including FGF2, IP-10, IL-6, IL-17A, and MDC, but negatively correlated with IL-3. Discussion: Overall, the findings of the study showed that, for the first time, low-carbohydrate intake in healthy individuals of a normal weight might lead to dysfunctional glucose homeostasis, increased metabolic acidosis, and the possibility of triggering inflammation by C-peptide elevation in plasma.


Asunto(s)
Acidosis , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Síndrome Metabólico , Humanos , Insulina , Estudios Transversales , Péptido C , Carbohidratos de la Dieta , Glucemia/metabolismo , Obesidad
12.
Sci Rep ; 13(1): 14351, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658104

RESUMEN

Studies have established the association between increased plasma levels of matrix metalloproteinase (MMP)-9 and adipose tissue inflammation. Tumor necrosis factor α (TNFα) was elevated in obesity and is involved in the induction of MMP-9 in monocytic cells. However, the underlying molecular mechanism was incompletely understood. As per our recent report, TNFα mediates inflammatory responses through long-chain acyl-CoA synthetase 1 (ACSL1). Therefore, we further investigated the role of ACSL1 in TNFα-mediated MMP-9 secretion in monocytic cells. THP-1 cells and primary monocytes were used to study MMP-9 expression. mRNA and protein levels of MMP-9 were determined by qRT-PCR and ELISA, respectively. Signaling pathways were studied using Western blotting, inhibitors, and NF-kB/AP1 reporter cells. We found that THP-1 cells and primary human monocytes displayed increased MMP-9 mRNA expression and protein secretion after incubation with TNFα. ACSL1 inhibition using triacsin C significantly reduced the expression of MMP-9 in the THP-1 cells. However, the inhibition of ß-oxidation and ceramide biosynthesis did not affect the TNFα-induced MMP-9 production. Using small interfering RNA-mediated ACSL1 knockdown, we further confirmed that TNFα-induced MMP-9 expression/secretion was significantly reduced in ACSL1-deficient cells. TNFα-mediated MMP-9 expression was also significantly reduced by the inhibition of ERK1/ERK2, JNK, and NF-kB. We further observed that TNFα induced phosphorylation of SAPK/JNK (p54/46), ERK1/2 (p44/42 MAPK), and NF-kB p65. ACSL1 inhibition reduced the TNFα-mediated phosphorylation of SAPK/JNK, c-Jun, ERK1/2, and NF-kB. In addition, increased NF-κB/AP-1 activity was inhibited in triacsin C treated cells. Altogether, our findings suggest that ACSL1/JNK/ERK/NF-kB axis plays an important role in the regulation of MMP-9 induced by TNFα in monocytic THP-1 cells.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 9 de la Matriz/genética , Coenzima A Ligasas/genética
13.
J Inflamm Res ; 15: 4291-4302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923906

RESUMEN

Background: Overexpression of CCL2 (MCP-1) has been implicated in pathogenesis of metabolic conditions, such as obesity and T2D. However, the mechanisms leading to increased CCL2 expression in obesity are not fully understood. Since both IFN-γ and LPS levels are found to be elevated in obesity and shown to be involved in the regulation of metabolic inflammation and insulin resistance, we investigated whether these two agents could synergistically trigger the expression of CCL2 in obesity. Methods: Monocytes (Human monocytic THP-1 cells) were stimulated with IFN-γ and LPS. CCL2 gene expression was determined by real-time RT-PCR. CCL2 protein was determined by ELISA. Signaling pathways were identified by using epigenetic inhibitors and STAT1 siRNA. Acetylation of H3K27 was analyzed by Western blotting. The acetylation level of histone H3K27 in the transcriptional initiation region of CCL2 gene was determined by ChIP-qPCR. Results: Our results show that the co-incubation of THP-1 monocytes with IFN-γ and LPS significantly enhanced the expression of CCL2, compared to treatment with IFN-γ or LPS alone. Similar results were obtained using primary monocytes and macrophages. Interestingly, IFN-γ priming was found to be more effective than LPS priming in inducing synergistic expression of CCL2. Moreover, STAT1 deficiency significantly suppressed this synergy for CCL2 expression. Mechanistically, we showed that IFN-γ priming induced acetylation of lysine 27 on histone 3 (H3K27ac) in THP-1 cells. Chromatin immunoprecipitation (ChIP) assay followed by qRT-PCR revealed increased H3K27ac at the CCL2 promoter proximal region, resulting in stabilized gene expression. Furthermore, inhibition of histone acetylation with anacardic acid suppressed this synergistic response, whereas trichostatin A (TSA) could substitute IFN-γ in this synergy. Conclusion: Our findings suggest that IFN-γ, in combination with LPS, has the potential to augment inflammation via the H3K27ac-mediated induction of CCL2 in monocytic cells in the setting of obesity.

14.
Cells ; 10(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34831450

RESUMEN

IL-6 was found to be overexpressed in the adipose tissue of obese individuals, which may cause insulin resistance. However, the regulation of IL-6 in adipocytes in obesity setting remains to be explored. Since IL-1ß and TNFα are increased in obese adipose tissue and promote inflammation, we investigated whether cooperation between IL-1ß and TNFα influences the production of IL-6. Our data show that IL-1ß and TNFα cooperatively enhance IL-6 expression in 3T3L-1 adipocytes. Similar results were seen in human adipocytes isolated from subcutaneous and visceral fat. Although adipocytes isolated from lean and obese adipose tissues showed similar responses for production of IL-6 when incubated with IL-1ß/TNFα, secretion of IL-6 was higher in adipocytes from obese tissue. TNFα treatment enhanced CREB binding at CRE locus, which was further enhanced with IL-1ß, and was associated with elevated histone acetylation at CRE locus. On the other hand, IL-1ß treatments mediated C/EBPß binding to NF-IL-6 consensus, but not sufficiently to mediate significant histone acetylation. Interestingly, treatment with both stimulatory factors amplifies CREB binding and H3K14 acetylation. Furthermore, histone acetylation inhibition by anacardic acid or curcumin reduces IL-6 production. Notably, inhibition of histone deacetylase (HDAC) activity by trichostatin A (TSA) resulted in the further elevation of IL-6 expression in response to combined treatment of adipocytes with IL-1ß and TNFα. In conclusion, our results show that there is an additive interaction between IL-1ß and TNFα that depends on CREB binding and H3K14 acetylation, and leads to the elevation of IL-6 expression in adipocytes, providing interesting pathophysiological connection among IL-1ß, TNFα, and IL-6 in settings such as obesity.


Asunto(s)
Adipocitos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Interleucina-1beta/farmacología , Interleucina-6/genética , Lisina/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Células 3T3-L1 , Acetilación , Adipocitos/efectos de los fármacos , Animales , Secuencia de Bases , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacología , Interleucina-6/metabolismo , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
15.
Cells ; 9(8)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751118

RESUMEN

Metabolic inflammation is associated with increased expression of saturated free fatty acids, proinflammatory cytokines, chemokines, and adipose oxidative stress. Macrophage inflammatory protein (MIP)-1α recruits the inflammatory cells such as monocytes, macrophages, and neutrophils in the adipose tissue; however, the mechanisms promoting the MIP-1α expression remain unclear. We hypothesized that MIP-1α co-induced by palmitate and tumor necrosis factor (TNF)-α in monocytic cells/macrophages could be further enhanced in the presence of reactive oxygen species (ROS)-mediated oxidative stress. To investigate this, THP-1 monocytic cells and primary human macrophages were co-stimulated with palmitate and TNF-α and mRNA and protein levels of MIP-1α were measured by using quantitative reverse transcription, polymerase chain reaction (qRT-PCR) and commercial enzyme-linked immunosorbent assays (ELISA), respectively. The cognate receptor of palmitate, toll-like receptor (TLR)-4, was blunted by genetic ablation, neutralization, and chemical inhibition. The involvement of TLR4-downstream pathways, interferon regulatory factor (IRF)-3 or myeloid differentiation (MyD)-88 factor, was determined using IRF3-siRNA or MyD88-deficient cells. Oxidative stress was induced in cells by hydrogen peroxide (H2O2) treatment and ROS induction was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. The data show that MIP-1α gene/protein expression was upregulated in cells co-stimulated with palmitate/TNF-α compared to those stimulated with either palmitate or TNF-α (P < 0.05). Further, TLR4-IRF3 pathway was implicated in the cooperative induction of MIP-1α in THP-1 cells, and this cooperativity between palmitate and TNF-α was clathrin-dependent and also required signaling through c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Notably, ROS itself induced MIP-1α and could further promote MIP-1α secretion together with palmitate and TNF-α. In conclusion, palmitate and TNF-α co-induce MIP-1α in human monocytic cells via the TLR4-IRF3 pathway and signaling involving c-Jun/NF-κB. Importantly, oxidative stress leads to ROS-driven MIP-1α amplification, which may have significance for metabolic inflammation.


Asunto(s)
Quimiocina CCL3/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Palmitatos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Adulto , Donantes de Sangre , Quimiocina CCL3/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Peróxido de Hidrógeno/farmacología , Factor 3 Regulador del Interferón/genética , Macrófagos/metabolismo , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Células THP-1 , Receptor Toll-Like 4/genética , Transfección
16.
J Ayub Med Coll Abbottabad ; 21(4): 129-33, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21067045

RESUMEN

OBJECTIVE: To evaluate the various factors affecting survival in babies with oesophageal atresia and tracheo-oesophageal fistula. DESIGN: Descriptive study. SETTING: The study was carried out at the Department of Paediatric Surgery, The Children's Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad from March 2004 to March 2005. PATIENTS AND METHODS: All neonates with oesophageal atresia (EA) and tracheo-oesophageal fistula (TEF) during the study period were included in the study. Patients having isolated EA were excluded. A total of 80 patients were included in the study. Patients were received from the emergency department, OPD and Neonatal ICU. Diagnosis was confirmed by passing a radio opaque orogastric tube. Investigations were done to look for other associations. After stabilisation, right thoracotomy was performed, fistula was ligated and divided. An attempt was made to do a primary oesophago-oesopahgostomy. Nasogastric feeding was started on 2nd post-operative day. A contrast oesophagogram was performed on the 7th postoperative day and having ruled out leak, oral feeding was started. RESULTS: Out of the total, 33 (41%) survived and 47 (58%) patients died. Out of 47 deaths 20 (25%) died before surgery and 27 (34%) died after surgery. Mean follow up period was 6 months. Sixteen (20%) patients had anastomotic leak, 24 (30%) had anastomotic stricture, and 64 (80%) patients had postoperative pneumonia. CONCLUSION: We conclude that proper antenatal check ups will detect the problem early, avoid home deliveries and hence improve survival. Pneumonitis and septicaemia significantly affect survival. Availability of ICU is one of the main determinants of survival. The likely cause of high mortality rate in pre-operative patients in our series is non-availability ofNICU due to limited space in our setup.


Asunto(s)
Atresia Esofágica/mortalidad , Fístula Traqueoesofágica/mortalidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Pakistán/epidemiología , Factores de Riesgo , Análisis de Supervivencia
17.
Biomolecules ; 9(10)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581558

RESUMEN

Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in different types of cancer is associated with tumor growth and progression. Tumor necrosis factor-α (TNFα) is involved in the induction of GM-CSF in different cells; however, the underlying molecular mechanism in this production of GM-CSF has not been fully revealed. Recently, it was noted that TNFα mediates inflammatory responses through long-chain acyl-CoA synthetase 1 (ACSL1). Therefore, we investigated the role of ACSL1 in the TNFα mediated production of GM-CSF. Our results showed that MDA-MB-231 cells displayed increased GM-CSF mRNA expression and secretion after incubation with TNFα. Blocking of ACSL1 activity in the cells with triacsin C markedly suppressed the secretion of GM-CSF. However, inhibition of ß-oxidation and ceramide biosynthesis were not required for GM-CSF production. By small interfering RNA mediated knockdown, we further demonstrated that TNFα induced GM-CSF production was significantly diminished in ACSL1 deficient cells. TNFα mediated GM-CSF expression was significantly reduced by inhibition of p38 MAPK, ERK1/2 and NF-κB signaling pathways. TNFα induced phosphorylation of p38, ERK1/2, and NF-κB was observed during the secretion of GM-CSF. On the other hand, inhibition of ACSL1 activity attenuates TNFα mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB in the cells. Importantly, our findings suggest that ACSL1 plays an important role in the regulation of GM-CSF induced by TNFα in MDA-MB-231 cells. Therefore, ACSL1 may be considered as a potential novel therapeutic target for tumor growth.


Asunto(s)
Neoplasias de la Mama/metabolismo , Coenzima A Ligasas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Coenzima A Ligasas/genética , Femenino , Técnicas de Inactivación de Genes , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Triazenos/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Diabetes Metab Disord ; 17(1): 77-84, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30288388

RESUMEN

BACKGROUND: Obese human and mice were reported to have higher circularity endotoxin (LPS) levels as compared to their lean counter parts. The current study was aimed to reveal the molecular mechanisms underlying the LPS mediated induction of CCL2 in human monocytes/macrophages. METHODS: Human monocytic cell line THP-1, THP-1 cells derived macrophages and primary macrophages were treated with LPS and TNF-α (positive control). CCL2 expression was determined with real-time RT-PCR and ELISA. THP-1-XBlue™ cells, THP-1-XBlue™-defMyD cells, TLR4 neutralization antibody, TLR4 siRNA and inhibitors for NF-kB and MAPK were used to study the signaling pathways. Phosphorylation of NF-kB and c-Jun was analyzed by ELISA. RESULTS: LPS upregulates CCL2 expression at both mRNA (THP-1: 23.40 ± .071 Fold, P < 0.0001; THP-1-derived macrophages: 103 ± 0.56 Fold, < 0.0001; Primary macrophages: 48 ± 1.41 Fold, P < 0.0005) and protein (THP1 monocytes:1048 ± 5.67 pg/ml, P < 0.0001; THP-1-derived macrophages; 2014 ± 2.12, P = 0.0001; Primary macrophages: 859.5 ± 3.54, P < 0.0001) levels in human monocytic cells/macrophages. Neutralization of TLR4 blocked LPS-induced CCL-2 secretion (P < 0.0001). Silencing of TLR4 by siRNA also significantly reduced LPS-induced CCL-2 production. Furthermore, MyD88-Knockout cells treated with LPS did not produce CCL-2. NF-kB and c-Jun phosphorylation was noted in LPS treated cells. CONCLUSION: Overall, our data reveal that LPS induces CCL-2 in monocytes/macrophages via TLR4/MyD88 signaling which leads to the activation of NF-kB/AP-1 transcription factors.

19.
Artículo en Inglés | MEDLINE | ID: mdl-28396851

RESUMEN

BACKGROUND: Fractalkine (CX3CL1) is involved in the development of numerous inflammatory conditions including metabolic diseases. However, changes in the circulatory fractalkine levels in type-2 diabetes (T2D) and their relationship with inflammatory chemokines/cytokines remain unclear. The aim of the study was to determine the T2D-associated modulations in plasma fractalkine levels and investigate their relationship with circulatory chemokines/cytokines. METHODS: A total of 47 plasma samples were collected from 23 T2D and 24 non-diabetic individuals selected over a wide range of body mass index (BMI). Clinical metabolic parameters were determined using standard commercial kits. Fractalkine and chemokines/cytokines were measured using Luminex X-MAP® technology. C-reactive protein (CRP) was measured by ELISA. The data were compared using unpaired t-test and the dependence between two variables was assessed by Pearson's correlation coefficient (r). RESULTS: Plasma fractalkine levels were significantly higher (P = 0.005) in T2D patients (166 ± 14.22 pg/ml) as compared with non-diabetics (118 ± 8.90 pg/ml). In T2D patients, plasma fractalkine levels correlated positively (P ≤ 0.05) with inflammatory chemokines/cytokines including CCL3 (r = 0.52), CCL4 (r = 0.85), CCL11 (r = 0.51), CXCL1 (r = 0.67), G-CSF (r = 0.91), IFN-α2 (r = 0.97), IL-17A (r = 0.79), IL-1ß (r = 0.97), IL-12P70 (r = 0.90), TNF-α (r = 0.58), and IL-6 (r = 0.60). In non-diabetic individuals, fractalkine levels correlated (P ≤ 0.05) with those of CCL4 (r = 0.49), IL-1ß (r = 0.73), IL-12P70 (r = 0.41), and TNF-α (r = 0.50). Notably, plasma fractalkine levels in T2D patients associated with systemic inflammation (CRP) (r = 0.65, P = 0.02). CONCLUSIONS: The altered plasma fractalkine levels associate differentially with inflammatory chemokines/cytokines in T2D patients which may have implications for T2D immunopathogenesis.

20.
J Ayub Med Coll Abbottabad ; 18(2): 50-2, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16977814

RESUMEN

BACKGROUND: This study was carried out to compare the operative time and rate of complications of Mathieu and Snodgrass procedures for the repair of primary anterior hypospadias. METHODS: This study was carried out in the Department of Pediatric Surgery, The Children hospital, Pakistan Institute of Medical Sciences Islamabad, from March 2003 to Feb 2005. We managed 90 patients with primary anterior hypospadias. Children between 2 years to 12 years were included in the study. Those who had previous repair were excluded from the study. Only those patients were selected who never had their hypospadias repaired. Those with significant chordee were also excluded from the study. Patients were divided into two groups. Group I had Mathieu repair and Group II had Tubularized Incised Plate (TIP) urethroplasty (Snodgrass procedure). Stent was kept patent by frequent irrigation. Operative time was calculated for both the procedures separately. Patients were followed for subsequent complications. RESULTS: A total of 90 cases were studied. Mathieu repair was performed in 45 patients and tubularized incised plate (TIP) urethroplasty (Snodgrass procedure) in the rest of 45 patients. Cosmetic results were excellent with Snodgrass repair with a normal looking slit like meatus. Meatal stenosis and wound breakdown was equal in each group whereas urocutaneous fistula and proximal urethral stricture were seen more frequently in Mathieu group.


Asunto(s)
Hipospadias/cirugía , Procedimientos Quirúrgicos Urológicos Masculinos/métodos , Niño , Preescolar , Humanos , Masculino , Complicaciones Posoperatorias , Stents , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA