Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 36(4): 865-72, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22730242

RESUMEN

PURPOSE: To develop a simple correction approach to mitigate shading in 3 Tesla (T) breast MRI. MATERIALS AND METHODS: A slightly modified breast receive (Rx) array, which we termed field shaping array (FSA), was shown to mitigate breast shading at 3T. In this FSA, one Rx element was selectively unblocked and tuned off the Larmor frequency during the transmit (Tx) phase. The current flowing in this element during Tx created a secondary transmit field; the vector addition of this field and the one created directly by the body coil resulted in a more uniform excitation profile over the entire breast area. The receive Rx element was returned to its intended tuning during the Rx phase, ensuring unperturbed signal reception. RESULTS: Using the FSA, improved Tx field uniformity, better fat suppression, increased image homogeneity and reduced power deposition was seen in all volunteers studied. CONCLUSION: A simple modification of a standard breast Rx array, converting it to a field shaping array, was shown to mitigate breast shading in all volunteers studied.


Asunto(s)
Mama/anatomía & histología , Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Humanos , Campos Magnéticos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Magn Reson Med ; 64(1): 1-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20577982

RESUMEN

Susceptibility artifacts and excitation radiofrequency field B(1)+ inhomogeneity are major limitations in high-field MRI. Parallel transmission methods are promising for reducing artifacts in high-field applications. In particular, three-dimensional RF pulses have been shown to be useful for reducing B(1)+ inhomogeneity using multiple transmitters due to their ability to spatially shape the slice profile. Recently, two-dimensional spectral-spatial pulses have been demonstrated to be effective for reducing the signal loss susceptibility artifact by incorporating a frequency-dependent through-plane phase correction. We present the use of four-dimensional spectral-spatial RF pulses for simultaneous B(1)+ and through-plane signal loss susceptibility artifact compensation. The method is demonstrated with simulations and in T(2)*-weighted human brain images at 3 T, using a four-channel parallel transmission system. Parallel transmission was used to reduce the in-plane excitation resolution to improve the slice-selection resolution between two different pulse designs. Both pulses were observed to improve B(1)+ homogeneity and reduce the signal loss artifact in multiple slice locations and several human volunteers.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Humanos , Fantasmas de Imagen , Ondas de Radio , Radiografía
3.
Magn Reson Med ; 61(2): 255-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19165881

RESUMEN

The signal loss susceptibility artifact is a major limitation in gradient-echo MRI applications. Various methods, including z-shim techniques and multidimensional tailored radio frequency (RF) pulses, have been proposed to mitigate the through-plane signal loss artifact, which is dominant in axial slices above the sinus region. Unfortunately, z-shim techniques require multiple steps and multidimensional RF methods are complex, with long pulse lengths. Parallel transmission methods were recently shown to be promising for improving B1 inhomogeneity and reducing the specific absorption rate. In this work, a novel method using time-shifted slice-select RF pulses is presented for reducing the through-plane signal loss artifact in parallel transmission applications. A simultaneous z-shim is obtained by concurrently applying unique time-shifted pulses on each transmitter. The method is shown to reduce the signal loss susceptibility artifact in gradient-echo images using a four-channel parallel transmission system at 3T.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/anatomía & histología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
4.
Magn Reson Med ; 61(2): 493-500, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19161170

RESUMEN

Chemical shift imaging benefits from signal-to-noise ratio (SNR) and chemical shift dispersion increases at stronger main field such as 7 Tesla, but the associated shorter radiofrequency (RF) wavelengths encountered require B1+ mitigation over both the spatial field of view (FOV) and a specified spectral bandwidth. The bandwidth constraint presents a challenge for previously proposed spatially tailored B1+ mitigation methods, which are based on a type of echovolumnar trajectory referred to as "spokes" or "fast-kz". Although such pulses, in conjunction with parallel excitation methodology, can efficiently mitigate large B1+ inhomogeneities and achieve relatively short pulse durations with slice-selective excitations, they exhibit a narrow-band off-resonance response and may not be suitable for applications that require B1+ mitigation over a large spectral bandwidth. This work outlines a design method for a general parallel spectral-spatial excitation that achieves a target-error minimization simultaneously over a bandwidth of frequencies and a specified spatial-domain. The technique is demonstrated for slab-selective excitation with in-plane B1+ mitigation over a 600-Hz bandwidth. The pulse design method is validated in a water phantom at 7T using an eight-channel transmit array system. The results show significant increases in the pulse's spectral bandwidth, with no additional pulse duration penalty and only a minor tradeoff in spatial B1+ mitigation compared to the standard spoke-based parallel RF design.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Cuerpo Entero/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Magn Reson Med ; 60(6): 1422-32, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19025908

RESUMEN

Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/anatomía & histología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
6.
Magn Reson Med ; 59(6): 1355-64, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18506800

RESUMEN

A novel radio-frequency (RF) pulse design algorithm is presented that generates fast slice-selective excitation pulses that mitigate B+1 inhomogeneity present in the human brain at high field. The method is provided an estimate of the B+1 field in an axial slice of the brain and then optimizes the placement of sinc-like "spokes" in kz via an L1-norm penalty on candidate (kx, ky) locations; an RF pulse and gradients are then designed based on these weighted points. Mitigation pulses are designed and demonstrated at 7T in a head-shaped water phantom and the brain; in each case, the pulses mitigate a significantly nonuniform transmit profile and produce nearly uniform flip angles across the field of excitation (FOX). The main contribution of this work, the sparsity-enforced spoke placement and pulse design algorithm, is derived for conventional single-channel excitation systems and applied in the brain at 7T, but readily extends to lower field systems, nonbrain applications, and multichannel parallel excitation arrays.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Imagenología Tridimensional , Fantasmas de Imagen , Ondas de Radio
7.
J Magn Reson ; 195(1): 76-84, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18799336

RESUMEN

At high magnetic field, B(1)(+) non-uniformity causes undesired inhomogeneity in SNR and image contrast. Parallel RF transmission using tailored 3D k-space trajectory design has been shown to correct for this problem and produce highly uniform in-plane magnetization with good slice selection profile within a relatively short excitation duration. However, at large flip angles the excitation k-space based design method fails. Consequently, several large-flip-angle parallel transmission designs have recently been suggested. In this work, we propose and demonstrate a large-flip-angle parallel excitation design for 90 degrees and 180 degrees spin-echo slice-selective excitations that mitigate severe B(1)(+) inhomogeneity. The method was validated on an 8-channel transmit array at 7T using a water phantom with B(1)(+) inhomogeneity similar to that seen in human brain in vivo. Slice-selective excitations with parallel RF systems offer means to implement conventional high-flip excitation sequences without a severe pulse-duration penalty, even at very high B(0) field strengths where large B(1)(+) inhomogeneity is present.


Asunto(s)
Diseño Asistido por Computadora , Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Magnetismo/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Magn Reson Med ; 57(6): 1148-58, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17534905

RESUMEN

An eight-rung, 3T degenerate birdcage coil (DBC) was constructed and evaluated for accelerated parallel excitation of the head with eight independent excitation channels. Two mode configurations were tested. In the first, each of the eight loops formed by the birdcage was individually excited, producing an excitation pattern similar to a loop coil array. In the second configuration a Butler matrix transformed this "loop coil" basis set into a basis set representing the orthogonal modes of the birdcage coil. In this case the rung currents vary sinusoidally around the coil and only four of the eight modes have significant excitation capability (the other four produce anticircularly polarized (ACP) fields). The lowest useful mode produces the familiar uniform B(1) field pattern, and the higher-order modes produce center magnitude nulls and azimuthal phase variations. The measured magnitude and phase excitation profiles of the individual modes were used to generate one-, four-, six-, and eightfold-accelerated spatially tailored RF excitations with 2D and 3D k-space excitation trajectories. Transmit accelerations of up to six-fold were possible with acceptable levels of spatial artifact. The orthogonal basis set provided by the Butler matrix was found to be advantageous when an orthogonal subset of these modes was used to mitigate B(1) transmit inhomogeneities using parallel excitation.


Asunto(s)
Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/instrumentación , Artefactos , Diseño de Equipo , Imagenología Tridimensional/instrumentación , Fantasmas de Imagen
9.
Magn Reson Med ; 56(5): 1163-71, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17036289

RESUMEN

Spatially selective RF waveforms were designed and demonstrated for parallel excitation with a dedicated eight-coil transmit array on a modified 3T human MRI scanner. Measured excitation profiles of individual coils in the array were used in a low-flip-angle pulse design to achieve desired spatial target profiles with two- (2D) and three-dimensional (3D) k-space excitation with simultaneous transmission of RF on eight channels. The 2D pulse excited a high-resolution spatial pattern in-plane, while the 3D trajectory produced high-quality slice selection with a uniform in-plane excitation despite the highly nonuniform individual spatial profiles of the coil array. The multichannel parallel RF excitation was used to accelerate the 2D excitation by factors of 2-8, and experimental results were in excellent agreement with simulations based on the measured coil maps. Parallel RF transmission may become critical for robust and routine human studies at very high field strengths where B(1) inhomogeneity is commonly severe.


Asunto(s)
Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Imagen por Resonancia Magnética/instrumentación , Procesamiento de Señales Asistido por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA