Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Indian J Nucl Med ; 39(3): 177-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291077

RESUMEN

Purpose: The blur introduced by breathing motion degrades the diagnostic accuracy of whole-body F-18 fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) in lesions adjacent to the diaphragm by increasing the apparent size and by decreasing their metabolic activity. This study aims to evaluate the efficacy of motion correction by four-dimensional phase-based respiratory-gated (RG) 18F-FDG PET-CT in improving metabolic parameters of lesions adjacent to the diaphragm (especially in the lungs or liver). Materials and Methods: Eighteen patients with known lung or liver lesions underwent conventional 18F-FDG PET-CT and respiratory-gated PET-CT acquisition of the desired region using a pressure-sensing, phase-based respiratory-gating system. Maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained for these lesions from gated and nongated PET-CT images for analysis. Furthermore, a visual analysis of lesions was done. Statistics: Statistical significance of the RG image parameters was assessed by the two-tailed paired Student's t test and confirmed with the robust nonparametric Wilcoxon's signed-rank test (two-tailed asymptotic). Results: There was an overall significant increase in SUVmax (P 0.001) in all gating methods with a percentage increase maximum of about 18.13%. On gating methods, MTV decreased significantly (P = 0.001) than that of nongating method (maximum reduction of about 32.9%). There was a significant difference (P = 0.02) in TLG between gated and nongated methods. Conclusion: Motion correction with phase-based respiratory gating improves the diagnostic value of 18F-FDG PET-CT imaging for lung and liver lesions by more accurate delineation of the lesion volume and quantitation of SUV and can thus impact staging, diagnosis as well as management in selected patients.

2.
Eur J Radiol Open ; 10: 100477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36785643

RESUMEN

As new molecular tracers are identified to target specific receptors, tissue, and tumor types, opportunities arise for the development of both diagnostic tracers and their therapeutic counterparts, termed "theranostics." While diagnostic tracers utilize positron emitters or gamma-emitting radionuclides, their theranostic counterparts are typically bound to beta and alpha emitters, which can deliver specific and localized radiation to targets with minimal collateral damage to uninvolved surrounding structures. This is an exciting time in molecular imaging and therapy and a step towards personalized and precise medicine in which patients who were either without treatment options or not candidates for other therapies now have expanded options, with tangible data showing improved outcomes. This manuscript explores the current state of theranostics, providing background, treatment specifics, and toxicities, and discusses future potential trends.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA