Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7694, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565889

RESUMEN

The proteome holds great potential as an intermediate layer between the genome and phenome. Previous protein quantitative trait locus studies have focused mainly on describing the effects of common genetic variations on the proteome. Here, we assessed the impact of the common and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a comprehensive resource of genetic variation affecting the plasma protein levels and provides the interpretation of identified effects.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteoma , Humanos , Proteoma/genética , Estonia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Proteínas Sanguíneas/genética , Variaciones en el Número de Copia de ADN/genética
2.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38854010

RESUMEN

Genome sequencing efforts have led to the discovery of tens of millions of protein missense variants found in the human population with the majority of these having no annotated role and some likely contributing to trait variation and disease. Sequence-based artificial intelligence approaches have become highly accurate at predicting variants that are detrimental to the function of proteins but they do not inform on mechanisms of disruption. Here we combined sequence and structure-based methods to perform proteome-wide prediction of deleterious variants with information on their impact on protein stability, protein-protein interactions and small-molecule binding pockets. AlphaFold2 structures were used to predict approximately 100,000 small-molecule binding pockets and stability changes for over 200 million variants. To inform on protein-protein interfaces we used AlphaFold2 to predict structures for nearly 500,000 protein complexes. We illustrate the value of mechanism-aware variant effect predictions to study the relation between protein stability and abundance and the structural properties of interfaces underlying trans protein quantitative trait loci (pQTLs). We characterised the distribution of mechanistic impacts of protein variants found in patients and experimentally studied example disease linked variants in FGFR1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA