RESUMEN
INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.
Asunto(s)
Asma , Bradiquinina , Humanos , Animales , Ratones , Masculino , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Factor de Necrosis Tumoral alfaRESUMEN
Acute respiratory distress syndrome (ARDS) is defined as hypoxemic respiratory failure with intense pulmonary inflammation, involving hyperactivation of endothelial cells and neutrophils. Given the anti-inflammatory effects of aerobic exercise (AE), this study investigated whether AE performed daily for 5 weeks would inhibit extra-pulmonary LPS-induced ARDS. C57Bl/6 mice were distributed into Control, Exercise, LPS and Exercise+LPS groups. AE was performed on a treadmill for 5x/week for four weeks before LPS administration. 24hours after the final AE physical test, animals received 100ug of LPS intra-peritoneally. In addition, whole blood cell culture, neutrophils and human endothelial cells were preincubated with IL-10, an anti-inflammatory cytokine induced by exercise. AE reduced total protein levels (p<0.01) and neutrophil accumulation in bronchoalveolar lavage (BAL) (p<0.01) and lung parenchyma (p<0.01). AE reduced BAL inflammatory cytokines IL-1ß, IL-6 and GM-CSF (p<0.001), CXCL1/KC, IL-17, TNF-alpha and IGF-1 (p<0.01). Systemically, AE reduced IL-1ß, IL-6 and IFN-gamma (p<0.001), CXCL1/KC (p<0.01) and TNF-alpha (p<0.05). AE increased IL-10 levels in serum (p<0.001) and BAL (p<0.001). Furthermore, AE increased superoxide dismutase SOD (p<0.01) and decreased superoxide anion accumulation in the lungs (p<0.01). Lastly, pre-incubation with IL-10 significantly reduced LPS-induced activation of whole blood cells, neutrophils and HUVECs, as observed by reduced production of IL-1ß, IL-6, IL-8 and TNF-alpha. Our data suggest that AE inhibited LPS-induced lung inflammation by attenuating inflammatory cytokines and oxidative stress markers in mice and human cell culture via enhanced IL-10 production.
Asunto(s)
Interleucina-10/inmunología , Estrés Oxidativo , Condicionamiento Físico Animal , Neumonía/inmunología , Síndrome de Dificultad Respiratoria/inmunología , Lesión Pulmonar Aguda , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/sangre , Citocinas/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-10/farmacología , Lipopolisacáridos , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neumonía/inducido químicamente , Síndrome de Dificultad Respiratoria/inducido químicamenteRESUMEN
This study evaluated the role of the phototherapy and exercise training (EXT) as well as the combined treatment in general symptoms, pain, and quality of life in women suffering from fibromyalgia (FM). A total of 160 women were enrolled and measures were carried out in two sets: it was sought to identify the acute effect for a single phototherapy and EXT session (Set 1); long-term effect (10 weeks) of the interventions (Set 2). Phototherapy irradiation was performed at 11 locations in their bodies, employing a cluster with nine diodes (one super-pulsed infrared 905 nm, four light-emitting diodes [LEDs] of 640 nm, and four LEDs of 875 nm, 39.3 J per location). Algometry and VAS instrument were applied to evaluate pain. The FM symptoms were evaluated with Fibromyalgia Impact Questionnaire (FIQ) and Research Diagnostic Criteria (RDC) instruments. Quality of life was assessed through SF-36 survey. Set 1: pain threshold was improved with the phototherapy, and EXT improved the pain threshold for temporomandibular joint (right and left body side) and occipital site (right body side). Set 2: there was improved pain threshold in several tender points with the phototherapy and EXT. There was an overlap of therapies to reduce the tender point numbers, anxiety, depression, fatigue, sleep, and difficulty sleeping on FIQ/RDC scores. Moreover, quality of life was improved with both therapies. The phototherapy and EXT improved the pain threshold in FM women. A more substantial effect was noticed for the combined therapy, in which pain relief was accomplished by improving VAS and FIQ scores as well as quality of life.
Asunto(s)
Terapia por Ejercicio , Fibromialgia/radioterapia , Terapia por Luz de Baja Intensidad , Adulto , Terapia Combinada , Femenino , Humanos , Dimensión del Dolor , Umbral del Dolor , Calidad de Vida , Encuestas y Cuestionarios , Resultado del TratamientoRESUMEN
When conservative treatments fail, hip osteoarthritis (OA), a chronic degenerative disease characterized by cartilage wear, progressive joint deformity, and loss of function, can result in the need for a total hip arthroplasty (THA). Surgical procedures induced tissue trauma and incite an immune response. Photobiomodulation therapy (PBMt) using low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) has proven effective in tissue repair by modulating the inflammatory process and promoting pain relief. Therefore, the aim of this study was to analyze the immediate effect of PBMt on inflammation and pain of patients undergoing total hip arthroplasty. The study consisted of 18 post-surgical hip arthroplasty patients divided into two groups (n = 9 each) placebo and active PBMt who received one of the treatments in a period from 8 to 12 h following THA surgery. PBMt (active or placebo) was applied using a device consisting of nine diodes (one super-pulsed laser of 905 nm, four infrared LEDs of 875 nm, and four red LEDs 640 nm, 40.3 J per point) applied to 5 points along the incision. Visual analog scale (VAS) and blood samples for analysis of the levels of the cytokines TNF-α, IL-6, and IL-8 were recorded before and after PBMt application. The values for the visual analog scale as well as those in the analysis of TNF-α and IL-8 serum levels decreased in the active PBMt group compared to placebo-control group (p < 0.05). No decrease was observed for IL-6 levels. We conclude that PBMt is effective in decreasing pain intensity and post-surgery inflammation in patients receiving total hip arthroplasty.
Asunto(s)
Dolor Agudo/radioterapia , Artroplastia de Reemplazo de Cadera/efectos adversos , Inflamación/radioterapia , Terapia por Luz de Baja Intensidad , Anciano , Femenino , Humanos , Interleucina-6/metabolismo , Masculino , Dimensión del Dolor , Placebos , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
This study investigates the effect of photobiomodulation therapy (PBMT) on collagen type I and III, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF) in experimentally induced tendinopathy in female aged rats. Tendinopathy was induced by the Achilles tendoncollagenase peritendinous. Forty-two Wistar rats (Norvegicus albinus) were used; groups consisted of 36 aged animals (18 months old; mean body weight, 517.7 ± 27.54 g) and 6 adult animals (12 weeks old; mean body weight, 266± 19.30 g). The animals were divided into three groups: control, aged tendinopathy, and aged tendinopathy PBMT; the aged groups were subdivided based on time to euthanasia: 7, 14, and 21 days. PBMT involved a gallium-arsenide-aluminum laser (Theralaser, DMC®) with active medium operating at wavelength 830 ± 10 nm, 50 mW power, 0.028 cm2 laser beam, 107 J/cm2 energy density, 1.8 W/cm2 power density, and an energy of 3 J per point. The laser was applied by direct contact with the left Achilles tendon during 60 s per point at a frequency of three times per week, until the euthanasia date (7, 14, and 21 days). VEGF, MMP-3, and MMP-9 were analyzed by immunohistochemistry, and collagen type I and III by Sirius red. PBMT increased the deposition of collagen type I and III in a gradual manner, with significant differences relative to the group aged tendonitis (p < 0.001), and in relation to VEGF (p < 0.001); decreased expression of MMP-3 and 9 were observed in group aged tendinopathy (p < 0.001). PBMT, therefore, increased the production of collagen type I and III, downregulated the expression of MMP-3 and MMP-9, and upregulated that of VEGF, with age and age-induced hormonal deficiency.
Asunto(s)
Colágeno Tipo II/efectos de la radiación , Colágeno Tipo I/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Metaloproteinasa 9 de la Matriz/efectos de la radiación , Tendinopatía/radioterapia , Factor A de Crecimiento Endotelial Vascular/efectos de la radiación , Tendón Calcáneo , Animales , Modelos Animales de Enfermedad , Femenino , Láseres de Semiconductores/uso terapéutico , Metaloproteinasa 3 de la Matriz/efectos de la radiación , Ratas , Ratas WistarRESUMEN
The aim of this experimental study was to investigate the effects of low-intensity light-emitting diode (LED) phototherapy on the inflammatory process in the calcaneal tendon of ovariectomized rats (OVX) through the involvement of the inflammatory mediators interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α). Thirty-five female Wistar rats were divided into 4 groups: 3 groups of OVX rats totaling 30 rats (untreated OVX rats [OVX injury group], treated OVX rats [OVX LED group], and control OVX rats; subgroups existed based on the sampling times, which were 3, 7, and 14 days) and 1 group of non-OVX rats (not OVX; n = 5). Tendon injury was induced by trauma using a 208-g mass placed at 20 cm from the right tendon of each animal with energy of 0.70 J. The animals were treated 12 h after tendonitis with LED therapy and every 48 h thereafter until euthanasia (at 3, 7, or 14 days). The tendons were dissected and stored in liquid nitrogen at -196 °C, thawed only at the time of immunoenzymatic testing (ELISA). Groups treated with LED showed a decrease in the number of pro-inflammatory cells, IL-6, and TNF-α (p <0.05), and an increase in IL-10 (p < 0.05) when compared to the not OVX group (p < 0.05). It was concluded that low-intensity LED treatment using the parameters and wavelength of 945 nm in the time periods studied reduced the release of IL-6 and TNF-α and increased the release of IL-10, thereby improving the inflammatory response in OVX rats.
Asunto(s)
Tendón Calcáneo/efectos de la radiación , Terapia por Luz de Baja Intensidad , Ovariectomía , Tendón Calcáneo/lesiones , Tendón Calcáneo/metabolismo , Animales , Citocinas/metabolismo , Femenino , Inflamación/metabolismo , Inflamación/terapia , Ratas , Ratas WistarRESUMEN
This study was designed to determine if the levels of oxidative stress markers are influenced by low-level laser therapy (LLLT) in mdx mice subjected to high-intensity exercise training on an electric treadmill. We used 21 C57BL/10ScSn-Dmdmdx/J mice and 7 C57BL/10ScSn mice, all aged 4 weeks. The mice were divided into four groups: a positive control group of normal, wild-type mice (WT); a negative control group of untreated mdx mice; a group of mdx mice that underwent forced high-intensity exercise on a treadmill (mdx fatigue); and another group of mdx mice with the same characteristics that were treated with LLLT at a single point on the gastrocnemius muscle of the hind paw and underwent forced high-intensity exercise on a treadmill. The mdx mice treated with LLLT showed significantly lower levels of creatine kinase (CK) and oxidative stress than mdx mice that underwent forced high-intensity exercise on a treadmill. The activities of the antioxidant enzyme superoxide dismutase (SOD) were higher in control mdx mice than in WT mice. LLLT also significantly reduced the level of this marker. LLLT had a beneficial effect also on the skeletal muscle performance of mdx mice. However, the single application of LLLT and the dose parameters used in this study were not able to change the morphology of a dystrophic muscle.
Asunto(s)
Biomarcadores/metabolismo , Terapia por Luz de Baja Intensidad/métodos , Fatiga Muscular/fisiología , Estrés Oxidativo , Condicionamiento Físico Animal , Animales , Creatina Quinasa/sangre , Prueba de Esfuerzo , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Carbonilación Proteica , Superóxido Dismutasa/metabolismoRESUMEN
Low-level laser therapy (LLLT) has been increasingly used to accelerate wound healing in third-degree burns. This study investigated the effects of lasers on the tissue repair process of third-degree burns. Burns were produced on the backs of male Wistar rats. The animals were divided into four groups (n = 12): control, injury, LLLT 3 J/cm(2), and LLLT 4 J/cm(2). Each group was further divided into two subgroups; the rats in one subgroup were killed on day 8 and those in the other, on day 16 after injury. The animals in LLLT 3 J/cm(2) and LLLT 4 J/cm(2) were irradiated 1 h after injury, and irradiation was repeated every 48 h. Laser (660 nm, 35 mW) treatment at fluences of 3 and 4 J/cm(2) were used. After killing the rats, tissue fragments from the burnt area were removed for histological analysis. The LLLT-treated groups showed a significant decrease (p <0.05) in the number of inflammatory cells and increased collagen deposition compared to the injury group. Laser irradiation (both 3 and 4 J/cm(2)) resulted in reduction in the inflammatory process and improved collagen deposition, thereby ameliorating the healing of third-degree burns.
Asunto(s)
Quemaduras/metabolismo , Quemaduras/radioterapia , Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Terapia por Luz de Baja Intensidad/métodos , Animales , Quemaduras/patología , Modelos Animales de Enfermedad , Inflamación/patología , Inflamación/radioterapia , Láseres de Semiconductores/uso terapéutico , Masculino , Microscopía de Polarización , Ratas , Ratas Wistar , Factores de Tiempo , Cicatrización de Heridas/efectos de la radiaciónRESUMEN
The present study investigated the effects of low-level light-emitting diode (LED) therapy (880 ± 10 nm) on interleukin (IL)-10 and type I and III collagen in an experimental model of Achilles tendinitis. Thirty male Wistar rats were separated into six groups (n = 5), three groups in the experimental period of 7 days, control group, tendinitis-induced group, and LED therapy group, and three groups in the experimental period of 14 days, tendinitis group, LED therapy group, and LED group with the therapy starting at the 7th day after tendinitis induction (LEDT delay). Tendinitis was induced in the right Achilles tendon using an intratendinous injection of 100 µL of collagenase. The LED parameters were: optical power of 22 mW, spot area size of 0.5 cm(2), and irradiation time of 170 s, corresponding to 7.5 J/cm(2) of energy density. The therapy was initiated 12 h after the tendinitis induction, with a 48-h interval between irradiations. The IL-10 and type I and III collagen mRNA expression were evaluated by real-time polymerase chain reaction at the 7th and 14th days after tendinitis induction. The results showed that LED irradiation increased IL-10 (p < 0.001) in treated group on 7-day experimental period and increased type I and III collagen mRNA expression in both treated groups of 7- and 14-day experimental periods (p < 0.05), except by type I collagen mRNA expression in LEDT delay group. LED (880 nm) was effective in increasing mRNA expression of IL-10 and type I and III collagen. Therefore, LED therapy may have potentially therapeutic effects on Achilles tendon injuries.
Asunto(s)
Tendón Calcáneo/metabolismo , Tendón Calcáneo/efectos de la radiación , Colágeno Tipo III/genética , Colágeno Tipo I/genética , Interleucina-10/genética , Fototerapia/métodos , Tendinopatía/genética , Tendinopatía/terapia , Animales , Modelos Animales de Enfermedad , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba/efectos de la radiaciónRESUMEN
Osteoarthritis (OA) resulting from injury or disease is associated with increased levels of several matrix metalloproteinases (MMPs), which degrade all components of the complex extracellular matrix in the cartilage. The objective of this study is to investigate the effect of low-level laser therapy (LLLT) on papain-induced joint damage in rats by histopathology and analysis of metalloproteinase 2 and 9 production. Sixty male Wistar rats were randomly distributed into four groups of 15 animals: (1) non-injury negative control, (2) injury positive control, (3) treated with LLLT at 50 mW, and (4) treated with LLLT at 100 mW. OA was induced in animals using papain (4 % solution) followed by treatment with LLLT. After 7, 14, and 21 days, the animals were euthanized. The articular lavage was collected and centrifuged; then, the supernatant was stored prior to protein analysis by western blot. The material was stained with hematoxylin and eosin for histopathological analysis, and Picrosirius Red was used to estimate the percentage of collagen fibers. To determine normal distribution, ANOVA and Tukey's post hoc test were used for comparison between and within each group at each time period. All data are expressed as mean and standard deviation values, with the null hypothesis considered as p < 0.05. Both laser groups (50 and 100 mW) were effective in tissue repair, decreasing collagen type III expression and increasing type I expression in all experimental periods; however, LLLT at 50 mW reduced metalloproteinase 9 more than at 100 mW in 21 days. LLLT at 50 mW was more efficient in the modulation of matrix MMPs and tissue repair.
Asunto(s)
Cartílago Articular/efectos de la radiación , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad , Cicatrización de Heridas/efectos de la radiación , Animales , Western Blotting , Cartílago Articular/lesiones , Cartílago Articular/fisiopatología , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de la radiación , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Papaína , Ratas , Ratas WistarRESUMEN
The aim of this study was to investigate the effect of low-intensity laser (LILT) infrared (830 nm) therapy in tendon inflammation, tendinitis induced by mechanical trauma in rat Achilles tendon. For this, we used 65 young male Wistar rats, weighing ± 300 g divided into different groups: C = control (n = 5) and experimental (n = 10/group), with two different times of sacrifice such as treated with L = laser, D = treated with diclofenac, and T = untreated injured. The tendon inflammation was induced by controlled contusion in the medial region of the Achilles tendon of the animals. The treated groups received some kind of intervention every 24 h, all groups were sacrificed on the 7th or 14th day after the trauma. The tendons were dissected, extracted, and sent for analysis. Histological analysis of the L group showed a decrease in the number of inflammatory cells in relation to other groups in both periods studied. The comparative results between the number of inflammatory cells in the control and treated groups at 7 and 14 days showed statistically significant differences. Qualitative analysis findings obtained by the picrosirius red technique under polarized light showed that in 7 days, the T group presented collagen types I and III in the same proportion; group D presented a predominance of type III fibers, while in group L, type I collagen predominated. The 14-day group D showed collagen types I and III in the same proportion, while in group L, there was a predominance of type I fibers. Biomechanical analysis showed that 7-day groups L and C showed similar stiffness and increased breaking strength. The 14-day groups L and C showed greater rupturing strength as well as increased stiffness angle. Group D showed a decrease of maximum traction strength and degree of rigidity. It was concluded that treatment with LIL in the parameters used and the times studied reduces migration of inflammatory cells and improves the quality of repair while reducing the functional limitations.
Asunto(s)
Terapia por Luz de Baja Intensidad , Tendinopatía/radioterapia , Traumatismos de los Tendones/radioterapia , Tendón Calcáneo/lesiones , Tendón Calcáneo/fisiopatología , Tendón Calcáneo/efectos de la radiación , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Fenómenos Biomecánicos , Colágeno Tipo I/metabolismo , Diclofenaco/farmacología , Diclofenaco/uso terapéutico , Masculino , Ratas Wistar , Tendinopatía/inmunología , Traumatismos de los Tendones/inmunología , Cicatrización de Heridas/efectos de la radiaciónRESUMEN
Synovial membrane inflammation plays an important role in osteoarthritis (OA) pathophysiology. The synovial tissue of patients with initial OA is characterized by mononuclear cell infiltration and the production of pro-inflammatory cytokines and other mediators of joint injury. The study aims to evaluate the effect of low-level laser therapy (LLLT) at doses of 2 and 4 J on joint inflammation in rats induced by papain through histopathological analysis, differential counts of inflammatory cells; gene expression of IL-1ß, IL-6, and IL-10; and TNF-α protein expression. Male Wistar rats (20) were randomly divided (5 animals each) into a negative control group, an inflammation injury positive control group, a 2-J LLLT group subjected to injury and treated with 2 J of LLLT, and a 4-J LLLT group subjected to injury and treated with 4 J of LLLT. The animals were subjected to joint inflammation (4 % papain solution) and treated with LLLT. On the day of euthanasia, articular lavage was collected and centrifuged. The supernatant was analyzed for TNF-α protein expression by ELISA and IL-1ß, IL-6, and IL-10 mRNA by RT-PCR. The joint tissue was also examined histologically. ANOVA with Tukey's post hoc test was used for comparisons. All data were expressed as means ± S.D. (p < 0.05). Both laser modalities were efficient in reducing cellular inflammation and decreasing the expression of IL-1ß and IL-6. However, the 2-J treatment led to more reduction in TNF-α than the 4-J treatment. A single application of LLLT with 2 J was more efficient in modulating inflammatory mediators and inflammatory cells.
Asunto(s)
Cartílago Articular/efectos de la radiación , Citocinas/metabolismo , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad , Macrófagos/efectos de la radiación , Neutrófilos/efectos de la radiación , Osteoartritis de la Rodilla/radioterapia , Animales , Cartílago Articular/inmunología , Cartílago Articular/metabolismo , Citocinas/genética , Expresión Génica , Mediadores de Inflamación/metabolismo , Recuento de Leucocitos , Macrófagos/inmunología , Masculino , Neutrófilos/inmunología , Osteoartritis de la Rodilla/inmunología , Ratas WistarRESUMEN
The wound-healing process plays an essential role in the protective response to epidermal injury by tissue regeneration. In the elderly, skin functions deteriorate as a consequence of morphological and structural changes. This study aimed to evaluate and compare the effect of low-level laser therapy (LLLT) in cutaneous wound healing in young and aged rats. A total of 60 male rats comprising 30 young (± 30 days) and 30 aged (± 500 days) was used. The animals were divided into four experimental groups and underwent skin wound and/or treatment with LLLT (660 nm, 30 mW, 1.07 W/cm(2), 0.028 cm(2), 72 J/cm(2), and 2 J). Analyses were conducted to verify the effects of LLLT in the tissue repair process, in the gene expression, and protein expression of TNF-α, IL-1ß, and IL-10, obtained in skin wound model. Results showed that there were significant differences between the young control group and the aged control group and their respective treated groups (LLLT young and LLLT aged). We conclude that LLLT has shown to be effective in the treatment of skin wounds in young and aged animals at different stages of the tissue repair process, which suggests that different LLLT dosimetry should be considered in treatment of subjects of different ages. Further clinical trials are needed to confirm these findings in clinical settings.
Asunto(s)
Envejecimiento/patología , Biomarcadores/metabolismo , Inflamación/patología , Terapia por Luz de Baja Intensidad , Piel/metabolismo , Piel/patología , Cicatrización de Heridas , Animales , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
[Purpose] The aim of the present study was to evaluate the effect of a biteplate on the cranio-cervical posture of children with bruxism. [Subjects and Methods] Twelve male and female children aged six to 10â years with a diagnosis of bruxism participated in this study. The children used a biteplate during sleep for 30 days and were submitted to three postural evaluations: initial, immediately following placement of the biteplate, and at the end of treatment. Posture analysis was performed with the aid of the Alcimagem(®) 2.1 program. Data analysis (IBM SPSS Statistics 2.0) involved descriptive statistics and the Student's t-test. [Results] A statistically significant difference was found between the initial cranio-cervical angle and the angle immediately following placement of the biteplate. However, no statistically significant difference was found between the initial angle and the angle after one month of biteplate usage. [Conclusion] No significant change in the cranio-cervical posture of the children was found one month of biteplate usage. However, a reduction occurred in the cranio-cervical angle when the biteplate was in position.
RESUMEN
Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.
Asunto(s)
Intestinos/irrigación sanguínea , Terapia por Luz de Baja Intensidad , Neumonía/radioterapia , Tráquea/fisiopatología , Tráquea/efectos de la radiación , Animales , Regulación de la Expresión Génica/efectos de la radiación , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasa/metabolismo , Neumonía/etiología , Neumonía/metabolismo , Edema Pulmonar/radioterapia , Ratas , Ratas Wistar , Reperfusión , Daño por Reperfusión/etiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
A variety of treatments for tendinopathies is currently used or has been trialed. However, in fact, there is a remarkably little evidence that any conventional therapies are effective. In the last years, low-level laser therapy (LLLT) has been showing interesting results in inflammatory modulation in different musculoskeletal disorders, but the optimal parameters and mechanisms behind these effects are not fully understood. The aim of this study is to investigate if the LLLT modulates the acute and chronic phase of collagenase-induced tendinitis in rat by interfering in mRNA expression for matrix metalloproteinases (MMP13 and MMP1), vascular endothelial growth factor (VEGF), and anti-inflammatory mediator (interleukin (IL)-10). For such, tendinitis was induced by collagenase injection in male Wistar rats. Animals were treated with LLLT (780 nm, potency of 22 mW, 107 mW/cm(2), energy density of 7.5 J/cm(2), and energy delivered of 1.54 J) with different number of treatments in accordance with the inflammatory phase analyzed. LLLT was able to modulate mRNA gene expression of IL-10, VGEF, MMP1, and MMP13 both in acute than in chronic inflammatory phase (p<0.05). Our results suggest that LLLT with parameters employed in the present study was able to modulate IL-10, VEGF, MMP1, and MMP13 mRNA gene expression both in acute than in chronic tendon inflammation. However, further studies are needed to establish optimal parameters for LLLT.
Asunto(s)
Terapia por Luz de Baja Intensidad , Tendinopatía/radioterapia , Enfermedad Aguda , Animales , Enfermedad Crónica , Colagenasas/administración & dosificación , Modelos Animales de Enfermedad , Expresión Génica/efectos de la radiación , Inflamación/etiología , Inflamación/genética , Inflamación/radioterapia , Mediadores de Inflamación/metabolismo , Interleucina-10/genética , Masculino , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tendinopatía/etiología , Tendinopatía/genética , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease of unknown etiology. Treatment of RA is very complex, and in the past years, some studies have investigated the use of low-level laser therapy (LLLT) in treatment of RA. However, it remains unknown if LLLT can modulate early and late stages of RA. With this perspective in mind, we evaluated histological aspects of LLLT effects in different RA progression stages in the knee. It was performed a collagen-induced RA model, and 20 male Wistar rats were divided into 4 experimental groups: a non-injured and non-treated control group, a RA non-treated group, a group treated with LLLT (780 nm, 22 mW, 0.10 W/cm(2), spot area of 0.214 cm(2), 7.7 J/cm(2), 75 s, 1.65 J per point, continuous mode) from 12th hour after collagen-induced RA, and a group treated with LLLT from 7th day after RA induction with same LLLT parameters. LLLT treatments were performed once per day. All animals were sacrificed at the 14th day from RA induction and articular tissue was collected in order to perform histological analyses related to inflammatory process. We observed that LLLT both at early and late RA progression stages significantly improved mononuclear inflammatory cells, exudate protein, medullary hemorrhage, hyperemia, necrosis, distribution of fibrocartilage, and chondroblasts and osteoblasts compared to RA group (p < 0.05). We can conclude that LLLT is able to modulate inflammatory response both in early as well as in late progression stages of RA.
Asunto(s)
Artritis Reumatoide/patología , Artritis Reumatoide/radioterapia , Terapia por Luz de Baja Intensidad , Animales , Artritis Reumatoide/inducido químicamente , Condrocitos/patología , Condrocitos/efectos de la radiación , Colágeno/efectos adversos , Modelos Animales de Enfermedad , Exudados y Transudados/efectos de la radiación , Fibrocartílago/patología , Fibrocartílago/efectos de la radiación , Masculino , Osteoblastos/patología , Osteoblastos/efectos de la radiación , Ratas , Ratas WistarRESUMEN
Leukemia is among the most common types of hematological cancers and the use of herbal medicines to prevent and treat leukemia are under quick development. Among several molecular pathways involved in leukemia pathogenesis and exacerbations, purinergic signaling is revealed as a key component. In the present study, the effects of two doses (5 ug/mL and 10 ug/mL) of Immunity-6™, a phytocomplex composed by beta-glucan, green tea (Camelia sinensis), chamomile (Matricaria chamomilla), and ascorbic acid (vitamin C) was tested in vitro, using chronic myelogenous leukemia cell line (K-562; 5 ×104/mL/well), which were challenged with lipopolysaccharide (LPS; 1 ug/mL) for 24 h. The results demonstrated that both doses of Immunity-6™ inhibited ATP release (p < 0.001) and P2×7 receptor at mRNA levels expression (p < 0.001). Purinergic inhibition by Immunity-6™ was followed by reduced release of proinflammatory cytokines IL-1beta (p < 0.001) and IL-6 (p < 0.001), while only 5 ug/mL of Immunity-6™ reduced the release of TNF-alpha (p < 0.001). Beyond to inhibit the release of pro-inflammatory cytokines, both doses of Immunity-6™ induced the release of anti-inflammatory cytokine IL-10 (p < 0.001), while only the higher dose (10 ug/mL) of Immunity-6™ induced the release of anti-inflammatory IL-1ra (p < 0.05) and klotho (p < 0.001). Thus, Immunity-6™ may be a promising adjuvant in the treatment of leukemia and further clinical trials are guaranteed.
Asunto(s)
Citocinas , Leucemia , Fitoterapia , Humanos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Leucemia/tratamiento farmacológico , Lipopolisacáridos/farmacología , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
There has recently been constant effort to evaluate therapies that may have a positive effect on bone regeneration. However, there are few studies in the literature on the effects of low-level laser therapy (LLLT) involving tissues treated with anabolic steroids. The present study evaluated the effects of LLLT (AsGaAl 780 nm, 3 J/cm(2), 10 mW, beam spot of 0.04 cm(2), total energy 0.12 J) on the proliferation, adhesion, and differentiation of osteoblasts cultured in the presence of nandrolone decanoate (ND). The MTT method was employed to evaluate cell proliferation and adhesion. Cell differentiation was evaluated by measuring alkaline phosphatase activity. There was a significant decrease in cell proliferation in the irradiated group treated with 50 µM ND when compared to the control group, after 48 h. After 72 h, cell proliferation was significantly greater in the control group than in the irradiated groups treated with the steroid at concentrations of 10, 25, and 50 µM. With regard to cell differentiation, alkaline phosphatase activity was significantly higher in the irradiated group treated with 50 µM ND than in the control group, irradiated non-treated group, and irradiated group treated with 25 µM ND. After 60 min of plating, the irradiated non-treated group and irradiated groups treated with the steroid at concentrations of 5, 10, and 25 µM exhibited a significant increase in cell adhesion compared to the control group. LLLT in combination with a high concentration of steroid inhibited cell proliferation, possibly by inducing cell differentiation, while irradiation combined with lower concentrations of the steroid induced an increase in cell adhesion.
Asunto(s)
Adhesión Celular/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Nandrolona/análogos & derivados , Osteoblastos/efectos de la radiación , Fosfatasa Alcalina/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Nandrolona/farmacología , Nandrolona Decanoato , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , RatasRESUMEN
In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm(2), 100 s irradiation per point, 5 J, 1,785 J/cm(2) at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts.