Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 109(16): 162502, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23215071

RESUMEN

The neutron-rich lead isotopes, up to (216)Pb, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond (208)Pb.

2.
Rev Sci Instrum ; 81(2): 02A904, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20192402

RESUMEN

The production of radioactive ions using the Isotope Separation On-Line method gives rise, in most cases, to singly charged ions. In order to perform experiments with postaccelerated radioactive ion beams, these ions have to be multicharged. We describe here a new compact design for a charge breeder that will be coupled to the production target of SPIRAL1 at GANIL. We present recent results obtained offline with stable alkali ions (Na, K, Rb, and Cs) on the SIRa test bench. Particularly, 1(+) to N(+) conversion efficiencies and conversion times are presented. Several points have been identified for the improvements of the present performances.

3.
Phys Rev Lett ; 99(25): 252501, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18233516

RESUMEN

The root-mean-square (rms) nuclear charge radius of 8He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of 6He was measured to be 2.068(11) fm, in excellent agreement with a previous result. The significant reduction in charge radius from 6He to 8He is an indication of the change in the correlations of the excess neutrons and is consistent with the 8He neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA