Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nephrol Dial Transplant ; 38(2): 425-434, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35274705

RESUMEN

BACKGROUND: Low areal bone mineral density (BMD), increased fracture risk and altered bone remodeling have been described among stone formers (SFs), but the magnitude of these findings differs by age, sex, menopausal status and urinary calcium (uCa). This study aimed to investigate volumetric BMD (vBMD), bone microarchitecture and biomechanical properties by high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA) in young SFs, irrespective of calciuria, further distinguishing trabecular from cortical compartments. METHODS: HR-pQCT/FEA was performed at the distal tibia (DT) and distal radius (DR) in 106 SFs (57 males and 49 premenopausal females; median age 37 years) and compared with 106 non-SFs (NSFs) retrieved from an existing database, matched for age, sex and body mass index (BMI). Biochemical/hormonal serum and urinary parameters were obtained from SFs. RESULTS: SFs exhibited significantly lower trabecular number (TbN) and higher trabecular separation (TbSp) than NSFs at both anatomical sites and lower cortical porosity in the DR. In a subgroup analysis separated by sex, female SFs presented significantly lower TbvBMD, relative bone volume fraction (BV/TV) and TbN and higher TbSp than NSFs at both sites, while male SFs showed significantly lower stiffness and failure load. Multivariate analysis showed TbN to be independently associated with sex and BMI at both sites and with uCa at the DR. CONCLUSIONS: The present findings suggest that bone disease represents an early event among SFs, associated at least in part with calcium excretion and mainly characterized by trabecular bone microarchitecture impairment, especially among women, but with reduced bone strength parameters in men.


Asunto(s)
Enfermedades Óseas Metabólicas , Cálculos Renales , Femenino , Masculino , Humanos , Adulto , Densidad Ósea , Estudios Transversales , Calcio , Absorciometría de Fotón
2.
J Bone Miner Metab ; 41(5): 666-672, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37418074

RESUMEN

INTRODUCTION:  The aim of this study is to evaluate and compare the trabecular bone scores (TBSs) of 11 children and 24 adults with X-linked hypophosphatemic rickets (XLH) and non-XLH subjects from a tertiary center. MATERIALS AND METHODS:  The areal bone mineral density at the lumbar spine (LS-aBMD) and LS-aBMD Z score were analyzed by dual-energy X-ray absorptiometry. The bone mineral apparent density (BMAD) and LS-aBMD Z score adjusted for height Z score (LS-aBMD-HAZ) were calculated. The TBS was determined using TBS iNsight software based on DXA images from the Hologic QDR 4500 device. RESULTS: The XLH patients exhibited a higher mean LS-aBMD Z score, BMAD, and TBS than the non-XLH subjects (p < 0.01). LS-aBMD-HAZ and BMAD were greater in the XLH children than those in their corresponding non-XLH subjects (p < 0.01 and p = 0.02), and the XLH children trended toward a greater TBS (p = 0.06). The XLH adults had a higher LS-aBMD Z score, BMAD, and TBS than the non-XLH subjects (p < 0.01). When stratified by metabolic status according to the serum values of bone formation markers, compensated adult patients had a higher LS-aBMD Z score, BMAD, and TBS than non-XLH subjects (p < 0.01). Noncompensated patients had higher LS-aBMD Z scores and BMAD results than non-XLH subjects. However, TBS values did not differ statistically significantly between those groups (p = 0.45). CONCLUSION: The higher LS-aBMD Z score, BMAD, and TBS result in the XLH patients compared to non-XLH subjects indicates an increased amount of trabecular bone within the lumbar spine, regardless of extraskeletal calcifications.


Asunto(s)
Hueso Esponjoso , Raquitismo Hipofosfatémico Familiar , Humanos , Adulto , Niño , Hueso Esponjoso/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen , Densidad Ósea , Absorciometría de Fotón/métodos , Vértebras Lumbares/diagnóstico por imagen
3.
J Gerontol A Biol Sci Med Sci ; 75(5): 931-938, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31257405

RESUMEN

BACKGROUND: Creatine supplementation could be a nonexpensive, safe, and effective dietary intervention to counteract bone loss. The aim of this study was to investigate whether long-term creatine supplementation can improve bone health in older, postmenopausal women. METHODS: A double-blind, placebo-controlled, parallel-group, randomized trial was conducted between November 2011 and December 2017 in Sao Paulo, Brazil. Two hundred postmenopausal women with osteopenia were randomly allocated to receive either creatine monohydrate (3 g/d) or placebo for 2 years. At baseline and after 12 and 24 months, we assessed areal bone mineral density (aBMD; primary outcome), lean and fat mass (through dual X-ray absorptiometry), volumetric BMD and bone microarchitecture parameters, biochemical bone markers, physical function and strength, and the number of falls and fractures. Possible adverse effects were self-reported. RESULTS: Lumbar spine (p < .001), femoral neck (p < .001), and total femur aBMD (p = .032) decreased across time; however, no interaction effect was observed (all p > .050). Bone markers, microarchitecture parameters, and the number of falls/fractures were not changed with creatine (all p > .050). Lean mass and appendicular skeletal muscle mass increased throughout the intervention (p < .001), with no additive effect of creatine (p = .731 and p = .397, respectively). Creatine did not affect health-related laboratory parameters. CONCLUSION: Creatine supplementation more than 2 years did not improve bone health in older, postmenopausal women with osteopenia, nor did it affect lean mass or muscle function in this population. This refutes the long-lasting notion that this dietary supplement alone has osteogenic or anabolic properties in the long run. CLINICAL TRIAL REGISTRY: Clinicaltrials.gov: NCT: 01472393.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Creatina/administración & dosificación , Osteoporosis/prevención & control , Absorciometría de Fotón , Accidentes por Caídas/estadística & datos numéricos , Anciano , Brasil/epidemiología , Método Doble Ciego , Femenino , Fracturas Óseas/epidemiología , Humanos , Persona de Mediana Edad , Fuerza Muscular/efectos de los fármacos , Posmenopausia
4.
IEEE J Transl Eng Health Med ; 8: 2100108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31966932

RESUMEN

Introduction: The effects of ageing on bone can be mitigated with different types of physical training, such as power training. However, stimuli that combine increasing external and internal loads concomitantly may improve bone quality. The goal of this study was to assess the efficacy of a combined power and plyometric training on lumbar spine and distal tibia microstructure and function. Methods: 38 sedentary elderly women between 60 and 70 years were randomly allocated in experimental (N = 21) and control group (N = 17). The effects of the 20-week protocol on lumbar spine microstructure and tibia microstructure and function were assessed by trabecular bone score (TBS), high resolution peripheral quantitative computed tomography (HR-pQCT) and microfinite element analysis. Results: when compared to the effects found in the control group, the experimental group showed significant improvements in lumbar spine TBS (Hedges' g = 0.77); and in distal tibia trabecular thickness (g = 0.82) and trabecular bone mineral density (g=0.63). Conclusion: our findings underscore the effectiveness of the proposed intervention, suggesting it as a new strategy to slow down and even reverse the structural and functional losses in the skeletal system due to ageing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA