Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 25(18): 185402, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24737220

RESUMEN

We measure the thermal conductivity of a 17.5-nm-thick single crystalline Si layer by using a suspended structure developed from a silicon-on-insulator wafer, in which the Si layer bridges the suspended platforms. The obtained value of 19 Wm(-1) K(-1) at room temperature represents a tenfold reduction with respect to bulk Si. This design paves the way for subsequent lateral nanostructuration of the layer with lithographic techniques, to define different geometries such as Si nanowires, nanostrips or phononic grids. As a proof of concept, nanostrips of 0.5 × 10 µm have been defined by focused ion beam (FIB) in the ultrathin Si layer. After the FIB cutting process with Ga ions at 30 kV and 100 pA, the measured thermal conductivity dramatically decreased to 1.7 Wm(-1) K(-1), indicating that the structure became severely damaged (amorphous). Re-crystallization of the structure was promoted by laser annealing while monitoring the Raman spectra. The thermal conductivity of the layer increased again to a value of 9.5 Wm(-1) K(-1) at room temperature, below that of the single crystalline material due to phonon scattering at the grain boundaries.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 1): 031110, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18517332

RESUMEN

The connection between the Maxwell-Cattaneo heat transport equation and a nonequilibrium entropy is examined through four different thermodynamic approaches, and it is shown that all of them lead to the same form of the nonequilibrium entropy. Furthermore, it is seen that this form is also consistent with three microscopic formalisms. This robustness underlines the consistency and relevance of the entropy.

3.
Nanoscale ; 9(20): 6741-6747, 2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28485423

RESUMEN

This work provides an in-depth study of how the thermal conductivity of stoichiometric [110] Bi2Te3 nanowires becomes affected when reducing its diameter from an experimental and theoretical point of view. The thermal conductivity was observed to decrease more than 70% (from 1.78 ± 0.46 W K-1 m-1 to 0.52 ± 0.35 W K-1 m-1) when the diameter of the nanowire was reduced one order of magnitude (from 300 nm to 25 nm). The Kinetic-Collective model was used to understand such a reduction, which can be explained by the impact that surface scattering has in acoustic phonons. The smaller the diameter of the nanowires is, the larger the alteration in the mean free path of the low-frequency phonons is. The model agrees well with the experimental data, and the reduction in the thermal conductivity of the nanowires can be explained in terms of an increment of phonon scattering.

4.
Proc Math Phys Eng Sci ; 470(2169): 20140371, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25197256

RESUMEN

The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon-phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA