Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409260

RESUMEN

Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract with an increasing prevalence worldwide. Targeted therapies for IBD are limited by several factors, including the therapeutic ceiling and the high incidence of non-responders or loss-of-response. In order to improve therapeutic efficacy, there is critical need to decipher disease pathogenesis, currently not well understood. Macrophages, innate immune cells that exhibit high plasticity, perpetuate inflammatory signalling in IBD through excessive release of inflammatory mediators. In recent years, pioneering research has revealed the importance of the interplay between macrophages and gut microbiota in maintaining intestinal homeostasis. Particular attention is focusing on microbiota-derived metabolites, believed to possess immunomodulatory properties capable of manipulating macrophage plasticity. Microbiota-derived short-chain fatty acids (SCFAs) and indole compounds, along with dietary sourced omega-3 (ω-3) polyunsaturated fatty acids (PUFA), exert anti-inflammatory effects, attributable to interactions with macrophages. Before we can effectively incorporate these metabolites into IBD therapies, a deeper understanding of microbiota-macrophage interactions at a molecular level is necessary. Therefore, the aim of this review is firstly to detail current knowledge regarding how diet and microbiota-derived metabolites modify macrophage plasticity. Later, we discuss the concept of therapeutic strategies directed at microbiota-macrophage interactions, which could be highly valuable for IBD therapies in the future.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedades Inflamatorias del Intestino , Microbiota , Dieta , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Intestinos , Macrófagos/metabolismo
2.
BMC Gastroenterol ; 20(1): 416, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302890

RESUMEN

BACKGROUND: Pediatric Crohn's disease is characterized by a higher incidence of complicated phenotypes. Murine models help to better understand the dynamic process of intestinal fibrosis and test therapeutic interventions. Pre-pubertal models are lacking. We aimed to adapt a model of chronic colitis to pre-pubertal rats and test if a polymeric diet rich in TGF-ß2 could reduce TNBS-induced intestinal inflammation and fibrosis. METHODS: Colitis was induced in 20 five-week-old Sprague-Dawley male rats by weekly rectal injections of increasing doses of TNBS (90 mg/kg, 140 mg/kg and 180 mg/kg) for 3 weeks, while 10 controls received phosphate-buffered saline. Rats were anesthetized using ketamine and chlorpromazine. After first administration of TNBS, 10 rats were fed exclusively MODULEN IBD® powder, while remaining rats were fed breeding chow. Colitis was assessed one week after last dose of TNBS by histopathology and magnetic resonance colonography (MRC). RESULTS: Histological inflammation and fibrosis scores were higher in TNBS group than controls (p < 0.05 for both). MRC showed increased colon wall thickness in TNBS group compared to controls (p < 0.01), and increased prevalence of strictures and target sign (p < 0.05). Colon expression of COL1A1, CTGF, α-SMA and COX-2 did not differ between TNBS rats and controls. TNBS colitis was not associated with growth failure. Treatment with MODULEN IBD® was associated with growth failure, increased colon weight/length ratio (p < 0.01), but did not affect histological scores or MRI characteristics. Colon expression of α-SMA was significantly lower in the MODULEN group versus controls (p = 0.005). CONCLUSION: Features of chronic colitis were confirmed in this model, based on MRC and histopathology. Treatment with MODULEN did not reverse inflammation or fibrosis.


Asunto(s)
Colitis , Factor de Crecimiento Transformador beta2 , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon , Dieta , Modelos Animales de Enfermedad , Inflamación , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Trinitrobencenos , Ácido Trinitrobencenosulfónico
3.
World J Gastroenterol ; 29(21): 3222-3240, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37377591

RESUMEN

Crohn's disease (CD) is an inflammatory bowel disease characterized by immune-mediated flares affecting any region of the intestine alternating with remission periods. In CD, the ileum is frequently affected and about one third of patients presents with a pure ileal type. Moreover, the ileal type of CD presents epidemiological specificities like a younger age at onset and often a strong link with smoking and genetic susceptibility genes. Most of these genes are associated with Paneth cell dysfunction, a cell type found in the intestinal crypts of the ileum. Besides, a Western-type diet is associated in epidemiological studies with CD onset and increasing evidence shows that diet can modulate the composition of bile acids and gut microbiota, which in turn modulates the susceptibility of the ileum to inflammation. Thus, the interplay between environmental factors and the histological and anatomical features of the ileum is thought to explain the specific transcriptome profile observed in CD ileitis. Indeed, both immune response and cellular healing processes harbour differences between ileal and non-ileal CD. Taken together, these findings advocate for a dedicated therapeutic approach to managing ileal CD. Currently, interventional pharmacological studies have failed to clearly demonstrate distinct response profiles according to disease site. However, the high rate of stricturing disease in ileal CD requires the identification of new therapeutic targets to significantly change the natural history of this debilitating disease.


Asunto(s)
Enfermedad de Crohn , Enfermedades del Íleon , Ileítis , Humanos , Enfermedad de Crohn/epidemiología , Enfermedad de Crohn/genética , Enfermedad de Crohn/terapia , Íleon/patología , Ileítis/patología , Inflamación/patología , Células de Paneth/metabolismo , Células de Paneth/patología , Enfermedades del Íleon/patología
4.
Microorganisms ; 10(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35336066

RESUMEN

Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD) without specific treatment. As macrophages are the key actors in inflammatory responses and the wound healing process, they have been extensively studied in chronic diseases these past decades. By their exceptional ability to integrate diverse stimuli in their surrounding environment, macrophages display a multitude of phenotypes to underpin a broad spectrum of functions, from the initiation to the resolution of inflammation following injury. The hypothesis that distinct macrophage subtypes could be involved in fibrogenesis and wound healing is emerging and could open up new therapeutic perspectives in the treatment of intestinal fibrosis. Gut microbiota and diet are two key factors capable of modifying intestinal macrophage profiles, shaping their specific function. Defects in macrophage polarisation, inadequate dietary habits, and alteration of microbiota composition may contribute to the development of intestinal fibrosis. In this review, we describe the intriguing triangle between intestinal macrophages, diet, and gut microbiota in homeostasis and how the perturbation of this discreet balance may lead to a pro-fibrotic environment and influence fibrogenesis in the gut.

5.
Nutrients ; 14(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014759

RESUMEN

BACKGROUND: Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD) patients without specific treatment. Aryl hydrocarbon receptor (AhR) activation is associated with better outcomes in intestinal inflammation. Development of novel therapies targeting fibrogenic pathways is required and we aimed to screen dietary AhR ligands for their anti-fibrotic properties in TGF-ß1-stimulated human colonic fibroblast cells. METHODS: The study was conducted using TGF-ß1-stimulated CCD-18Co, a human colonic fibroblast cell line in response to increased concentrations of dietary ligands of AhR such as FICZ, ITE, L-kynurenine and curcumin. Fibrosis markers such as α-SMA, COL1A1, COL3A1 and CTGF were assessed. AhR and ANRT RNA were evaluated. RESULTS: TGF-ß1 at 10 ng/mL significantly induced mRNA levels for ECM-associated proteins such as CTGF, COL1A1 and COL3A1 in CCD-18Co cells. FICZ from 10 to 1000 nM, L-kynurenine from 0.1 to 10 µM, ITE from 1 to 100 µM or curcumin from 5 to 20 µM had no significant effect on fibrosis markers in TGF-ß1-induced CCD-18Co. CONCLUSIONS: Our data highlight that none of the tested dietary AhR ligands had an effect on fibrosis markers in TGF-ß1-stimulated human colonic fibroblast cells in our experimental conditions. Further studies are now required to identify novel potential targets in intestinal fibrosis.


Asunto(s)
Curcumina , Factor de Crecimiento Transformador beta1 , Curcumina/metabolismo , Curcumina/farmacología , Fibroblastos , Fibrosis , Humanos , Quinurenina/metabolismo , Quinurenina/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
Nutrients ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079861

RESUMEN

The role of microbiota in eating disorders has recently emerged. Previous data reported that lipopolysaccharides induce anorexia and a decrease of body weight through the activation of toll-like receptor 4 (TLR4). In the activity-based anorexia (ABA) mouse model, an increase of TLR4 expression in intestinal epithelial cells (IEC) has been described. We thus aimed to characterize the role of TLR4 in IEC in the ABA model in male and female mice. For this purpose, Vill-CreERT2-TLR4 LoxP, which are depleted for TLR4 in IEC in response to 4-OH tamoxifen, were submitted (ABA) or not (CT) to the ABA procedure that combined free access to a running wheel and progressive time-limited access to food. We thus compared CT and ABA TLR4IEC-/- mice to CT and ABA TLR4IEC+/+ mice. In response to the ABA model, TLR4IEC+/+ male and female mice exhibited a body weight loss associated to a decrease of lean mass. In TLR4IEC-/- male mice, body weight loss was delayed and less pronounced compared to TLR4IEC+/+ male mice. We did not observe a difference of body weight loss in female mice. The body composition remained unchanged between TLR4IEC-/- and TLR4IEC+/+ mice in both sexes. In both sexes, ABA TLR4IEC+/+ mice exhibited an increase of food-anticipatory activity, as well as an increase of immobility time during the open field test. However, female TLR4IEC-/- mice showed a decrease of the time spent at the centre and an increase of the time spent at the periphery of the open field area, whereas we did not observe differences in the male mice. In conclusion, the invalidation of TLR4 in IEC modified the response to the ABA model in a sex-dependent manner. Further studies should decipher the underlying mechanisms.


Asunto(s)
Anorexia , Receptor Toll-Like 4 , Animales , Peso Corporal , Modelos Animales de Enfermedad , Femenino , Intestinos , Masculino , Ratones , Factores Sexuales , Receptor Toll-Like 4/genética , Pérdida de Peso
7.
Nutrients ; 13(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34579023

RESUMEN

The natural history of inflammatory bowel diseases, especially Crohn's disease, is frequently complicated by intestinal fibrosis. Because of the lack of effective treatments for intestinal fibrosis, there is an urgent need to develop new therapies. Factors promoting intestinal fibrosis are currently unclear, but diet is a potential culprit. Diet may influence predisposition to develop intestinal fibrosis or alter its natural history by modification of both the host immune response and intestinal microbial composition. Few studies have documented the effects of dietary factors in modulating IBD-induced intestinal fibrosis. As the mechanisms behind fibrogenesis in the gut are believed to be broadly similar to those from extra-intestinal organs, it may be relevant to investigate which dietary components can inhibit or promote fibrosis factors such as myofibroblasts progenitor activation in other fibrotic diseases.


Asunto(s)
Dieta/efectos adversos , Intestinos/patología , Fibrosis , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/patología , Intestinos/efectos de los fármacos
8.
Sci Rep ; 11(1): 15055, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301970

RESUMEN

Intestinal fibrosis is a frequent complication in inflammatory bowel diseases (IBD). It is a challenge to identify environmental factors such as diet that may be driving this risk. Intestinal fibrosis result from accumulation of extracellular matrix (ECM) proteins secreted by myofibroblasts. Factors promoting intestinal fibrosis are unknown, but diet appears to be a critical component in its development. Consumption of salt above nutritional recommendations can exacerbate chronic inflammation. So far, high salt diet (HSD) have not been thoroughly investigated in the context of intestinal fibrosis associated to IBD. In the present study, we analyze the role of dietary salt in TNBS chronic colitis induced in rat, an intestinal fibrosis model, or in human colon fibroblast cells. Here, we have shown that high-salt diet exacerbates undernutrition and promoted ECM-associated proteins in fibroblasts. Taken together, our results suggested that dietary salt can activate intestinal fibroblasts, thereby contributing to exacerbation of intestinal fibrosis. Dietary salt may be considered as a putative environmental factor that drives intestinal fibrosis risk.


Asunto(s)
Colitis/genética , Fibrosis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Sales (Química)/farmacología , Animales , Colitis/inducido químicamente , Colitis/patología , Dieta/efectos adversos , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Fibroblastos/efectos de los fármacos , Fibrosis/complicaciones , Fibrosis/patología , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/efectos de los fármacos , Intestinos/patología , Miofibroblastos/efectos de los fármacos , Ratas , Sales (Química)/efectos adversos , Ácido Trinitrobencenosulfónico/toxicidad
9.
Clin Nutr ; 40(5): 2734-2744, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33933739

RESUMEN

BACKGROUND & AIMS: In the last decade, the role of the microbiota-gut-brain axis in eating behavior and anxiety-depressive disorders has gained increasing attention. Although a gut microbiota dysbiosis has been reported in anorectic patients, its pathophysiological role remains poorly understood. Thus, we aimed to characterize the potential role of gut microbiota by evaluating the effects of its depletion in the Activity-Based Anorexia (ABA) mouse model both in male and female mice. METHODS: Male and female C57Bl/6 mice were submitted (ABA group) or not (CT group) to the ABA protocol, which combines access to a running wheel with a progressive limited food access. Gut microbiota was previously depleted or not by a cocktail of antibiotics (ATB) delivered by oral gavages. We monitored body composition, anxiety-like behavior, leptin and adiponectin plasma levels, hypothalamic and hippocampal neuropeptides mRNA levels, as well as dopamine (DRD) and serotonin (5HT1 and 4) receptors mRNA expression. RESULTS: In response to the ABA model, the body weight loss was less pronounced in ATB-treated ABA compared to untreated ABA, while food intake remained unaffected by ATB treatment. ATB-treated ABA exhibited increased fat mass and decreased lean mass compared to untreated ABA both in male and female mice, whereas but plasma adipokine concentrations were affected in a sex-dependent manner. Only male ABA mice showed a reduced anticipatory physical activity in response to ATB treatment. Similarly, anxiety-like behavior was mainly affected in ATB-treated ABA male mice compared to ATB-treated ABA female mice, which was associated with male-specific alterations of hypothalamic CRH mRNA and hippocampal DRD and 5-HT1A mRNA levels. CONCLUSIONS: Our study provides evidence that ATB-induced gut microbiota depletion triggers alterations of nutritional and behavioral responses to the activity-based anorexia model in a sex-dependent manner.


Asunto(s)
Anorexia , Ansiedad , Conducta Animal , Microbioma Gastrointestinal/efectos de los fármacos , Estado Nutricional , Anfotericina B/farmacología , Animales , Antibacterianos/farmacología , Antifúngicos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero , Factores Sexuales
10.
Nutrients ; 12(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202638

RESUMEN

BACKGROUND: Optimizing the refeeding of patients with anorexia nervosa remains important to limit somatic complications of malnutrition, as well as to avoid disease relapses by targeting persistent mood and intestinal disorders. We aimed to evaluate the effects of glutamine (Gln) and branched-chain amino acids (BCAA) supplementation during refeeding in activity-based anorectic (ABA) mice. METHOD: Male C57Bl/6 mice were randomized in control and ABA groups. Once ABA-induced malnutrition was established, mice were progressively refed or not. Refed mice had free access to drinking water supplemented or not with 1% Gln or 2.5% BCAA for 10 days. RESULTS: A progressive refeeding was associated with a partial restoration of body weight and lean mass, while a fat mass rebound was observed. In addition, refeeding restored glucose and leptin. Gln did not affect these parameters, while BCAA tended to increase body weight, fat mass, and glycaemia. In the colon, refeeding improved total protein synthesis and restored the LC3II/LC3I ratio, a marker of autophagy. Gln supplementation enhanced colonic protein synthesis, which was associated with an increased p-p70S6kinase/p70S6kinase ratio, whereas these effects were blunted by BCCA supplementation. CONCLUSIONS: In ABA mice, Gln and BCAA supplementations during a progressive refeeding fail to restore body weight and lean mass. However, Gln supplementation improves total colonic protein synthesis conversely to BCAA. Further studies are needed to decipher the underlying mechanisms involved in these opposite results.


Asunto(s)
Aminoácidos de Cadena Ramificada/administración & dosificación , Anorexia Nerviosa/metabolismo , Suplementos Dietéticos , Glutamina/administración & dosificación , Desnutrición/metabolismo , Animales , Anorexia Nerviosa/fisiopatología , Composición Corporal , Colon/fisiopatología , Conducta Alimentaria , Masculino , Desnutrición/fisiopatología , Ratones , Ratones Endogámicos C57BL , Permeabilidad , Biosíntesis de Proteínas
11.
J Nutr Biochem ; 81: 108382, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32417626

RESUMEN

Obesity and irritable bowel syndrome (IBS) are two major public health issues. Interestingly previous data report a marked increase of IBS prevalence in morbid obese subjects compared with non-obese subjects but underlying mechanisms remain unknown. Obesity and IBS share common intestinal pathophysiological mechanisms such as gut dysbiosis, intestinal hyperpermeability and low-grade inflammatory response. We thus aimed to evaluate the link between obesity and IBS using different animal models. Male C57Bl/6 mice received high fat diet (HFD) for 12 weeks and were then submitted to water avoidance stress (WAS). In response to WAS, HFD mice exhibited higher intestinal permeability and plasma corticosterone concentration than non-obese mice. We were not able to reproduce a similar response both in ob/ob mice and in leptin-treated non-obese mice. In addition, metformin, a hypoglycemic agent, limited fasting glycaemia both in unstressed and WAS diet-induced obese mice but only partially restored colonic permeability in unstressed HFD mice. Metformin failed to improve intestinal permeability in WAS HFD mice. Finally, cecal microbiota transplantation from HFD mice in antibiotics-treated recipient mice did not reproduce the effects observed in stressed HFD mice. In conclusion, stress induced a more marked intestinal barrier dysfunction in diet-induced obese mice compared with non-obese mice that seems to be independent of leptin, glycaemia and gut microbiota. These data should be further confirmed and the role of the dietary composition should be studied.


Asunto(s)
Mucosa Intestinal/metabolismo , Síndrome del Colon Irritable/metabolismo , Obesidad/metabolismo , Estrés Fisiológico , Animales , Ciego/microbiología , Colon/metabolismo , Corticosterona/sangre , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Humanos , Hipoglucemiantes/farmacología , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/epidemiología , Leptina/farmacología , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/epidemiología , Permeabilidad , Prevalencia
12.
Nutrients ; 11(5)2019 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31109097

RESUMEN

Inflammatory bowel diseases (IBDs) develop in genetically predisposed individuals in response to environmental factors. IBDs are concomitant conditions of industrialized societies, and diet is a potential culprit. Consumption of ultra-processed food has increased over the last decade in industrialized countries, and epidemiological studies have found associations between ultra-processed food consumption and chronic diseases. Further studies are now required to identify the potential culprit in ultra-processed food, such as a poor nutritional composition or the presence of food additives. In our review, we will focus on food additives, i.e., substances from packaging in contact with food, and compounds formed during production, processing, and storage. A literature search using PubMed from inception to January 2019 was performed to identify relevant studies on diet and/or food additive and their role in IBDs. Manuscripts published in English from basic science, epidemiological studies, or clinical trials were selected and reviewed. We found numerous experimental studies highlighting the key role of food additives in IBD exacerbation but epidemiological studies on food additives on IBD risk are still limited. As diet is a modifiable environmental risk factor, this may offer a scientific rationale for providing dietary advice for IBD patients.


Asunto(s)
Aditivos Alimentarios/efectos adversos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Dieta , Manipulación de Alimentos , Humanos , Factores de Riesgo
13.
Nutrients ; 11(6)2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208031

RESUMEN

BACKGROUND: During activity-based anorexia (ABA) in mice, enhanced paracellular permeability and reduced protein synthesis have been shown in the colon while the gut-brain axis has received increasing attention in the regulation of intestinal and mood disorders that frequently occur during anorexia nervosa, a severe eating disorder for which there is no specific treatment. In the present study, we assessed the effects of oral glutamine (Gln) or branched-chain amino acids (BCAA) supplementation during ABA to target intestinal functions, body composition and feeding behavior. METHODS: C57BL/6 male mice were randomized in Control (CTRL) and ABA groups. After ABA induction, mice received, or not, either 1% Gln or 2.5% BCAA (Leu, Ile, Val) for one week in drinking water. RESULTS: Neither Gln nor BCAA supplementation affected body weight and body composition, while only Gln supplementation slightly increased food intake. ABA mice exhibited increased paracellular permeability and reduced protein synthesis in the colonic mucosa. Oral Gln restored colonic paracellular permeability and protein synthesis and increased the mucin-2 mRNA level, whereas BCAA did not affect colonic parameters. CONCLUSION: In conclusion, oral Gln specifically improves colonic response during ABA. These data should be further confirmed in AN patients.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Anorexia/tratamiento farmacológico , Suplementos Dietéticos , Glutamina/farmacología , Mucosa Intestinal/efectos de los fármacos , Animales , Anorexia/fisiopatología , Composición Corporal/efectos de los fármacos , Colon/efectos de los fármacos , Colon/fisiopatología , Conducta Alimentaria/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA