Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 17(3): e1009425, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684132

RESUMEN

Environmental factors challenge the physiological homeostasis in animals, thereby evoking stress responses. Various mechanisms have evolved to counter stress at the organism level, including regulation by neuropeptides. In recent years, much progress has been made on the mechanisms and neuropeptides that regulate responses to metabolic/nutritional stress, as well as those involved in countering osmotic and ionic stresses. Here, we identified a peptidergic pathway that links these types of regulatory functions. We uncover the neuropeptide Corazonin (Crz), previously implicated in responses to metabolic stress, as a neuroendocrine factor that inhibits the release of a diuretic hormone, CAPA, and thereby modulates the tolerance to osmotic and ionic stress. Both knockdown of Crz and acute injections of Crz peptide impact desiccation tolerance and recovery from chill-coma. Mapping of the Crz receptor (CrzR) expression identified three pairs of Capa-expressing neurons (Va neurons) in the ventral nerve cord that mediate these effects of Crz. We show that Crz acts to restore water/ion homeostasis by inhibiting release of CAPA neuropeptides via inhibition of cAMP production in Va neurons. Knockdown of CrzR in Va neurons affects CAPA signaling, and consequently increases tolerance for desiccation, ionic stress and starvation, but delays chill-coma recovery. Optogenetic activation of Va neurons stimulates excretion and simultaneous activation of Crz and CAPA-expressing neurons reduces this response, supporting the inhibitory action of Crz. Thus, Crz inhibits Va neurons to maintain osmotic and ionic homeostasis, which in turn affects stress tolerance. Earlier work demonstrated that systemic Crz signaling restores nutrient levels by promoting food search and feeding. Here we additionally propose that Crz signaling also ensures osmotic homeostasis by inhibiting release of CAPA neuropeptides and suppressing diuresis. Thus, Crz ameliorates stress-associated physiology through systemic modulation of both peptidergic neurosecretory cells and the fat body in Drosophila.


Asunto(s)
Drosophila/fisiología , Redes y Vías Metabólicas , Sistemas Neurosecretores/metabolismo , Presión Osmótica , Animales , AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Modelos Biológicos , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Estrés Fisiológico
2.
Proc Biol Sci ; 289(1978): 20220844, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858069

RESUMEN

Determining how variation in brain morphology affects cognitive abilities is important to understand inter-individual variation in cognition and, ultimately, cognitive evolution. Yet, despite many decades of research in this area, there is surprisingly little experimental data available from assays that quantify cognitive abilities and brain morphology in the same individuals. Here, we tested female guppies (Poecilia reticulata) in two tasks, colour discrimination and reversal learning, to evaluate their learning abilities and cognitive flexibility. We then estimated the size of five brain regions (telencephalon, optic tectum, hypothalamus, cerebellum and dorsal medulla), in addition to relative brain size. We found that optic tectum relative size, in relation to the rest of the brain, correlated positively with discrimination learning performance, while relative telencephalon size correlated positively with reversal learning performance. The other brain measures were not associated with performance in either task. By evaluating how fast learning occurs and how fast an animal adjusts its learning rules to changing conditions, we find support for that different brain regions have distinct functional correlations at the individual level. Importantly, telencephalon size emerges as an important neural correlate of higher executive functions such as cognitive flexibility. This is rare evidence supporting the theory that more neural tissue in key brain regions confers cognitive benefits.


Asunto(s)
Poecilia , Animales , Encéfalo/anatomía & histología , Cognición , Aprendizaje Discriminativo , Femenino , Aprendizaje Inverso
3.
J Anim Ecol ; 91(2): 391-403, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775602

RESUMEN

Temperature and thermal variability are increasing worldwide, with well-known survival consequences. However, effects on other potentially more thermally sensitive reproductive traits are less understood, especially when considering thermal variation. Studying the consequences of male reproduction in the context of climate warming and ability to adapt is becoming increasingly relevant. Our goals were to test how exposure to different average temperatures that either fluctuated or remained constant impacts different male reproductive performance traits and to assess adaptive potential to future heat stress. We took advantage of a set of Drosophila melanogaster isogenic lines of different genotypes, exposing them to four different thermal conditions. These conditions represented a benign and a stressful mean temperature, applied either constantly or fluctuating around the mean and experienced during development when heat stress avoidance is hindered because of restricted mobility. We measured subsequent male reproductive performance for mating success, fertility, number of offspring produced and offspring sex ratio, and calculated the influence of thermal stress on estimated heritability and evolvability of these reproductive traits. Both costs and benefits to different thermal conditions on reproductive performance were found, with some responses varying between genotypes. Mating success improved under fluctuating benign temperature conditions and declined as temperature stress increased regardless of genotype. Fertility and productivity were severely reduced at fluctuating mean high temperature for all genotypes, but some genotypes were unaffected at constant high mean temperature. These more thermally robust genotypes showed a slight increase in productivity under the fluctuating benign condition compared to constant high temperature, despite both thermal conditions sharing the same temperature for 6 hr daily. Increasing thermal stress resulted in higher heritability and evolvability. Overall, the effects of temperature on reproductive performance depended on the trait and genotype; performance of some traits slightly increased when high temperatures were experienced for short periods but decreased substantially even when experiencing a benign temperature for a portion of each day. While thermal stress increased genetic variation that could provide adaptive potential against climate warming, this is unlikely to compensate for the overall severe negative effect on reproductive performance as mean temperature and variance increase.


Asunto(s)
Drosophila melanogaster , Reproducción , Adaptación Fisiológica , Animales , Drosophila melanogaster/genética , Respuesta al Choque Térmico , Calor , Masculino , Temperatura
4.
J Exp Biol ; 223(Pt 15)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32561630

RESUMEN

Reversal learning assays are commonly used across a wide range of taxa to investigate associative learning and behavioural flexibility. In serial reversal learning, the reward contingency in a binary discrimination is reversed multiple times. Performance during serial reversal learning varies greatly at the interspecific level, as some animals adopt a rule-based strategy that enables them to switch quickly between reward contingencies. A larger relative brain size, generating enhanced learning ability and increased behavioural flexibility, has been proposed to be an important factor underlying this variation. Here, we experimentally tested this hypothesis at the intraspecific level. We used guppies (Poecilia reticulata) artificially selected for small and large relative brain size, with matching differences in neuron number, in a serial reversal learning assay. We tested 96 individuals over 10 serial reversals and found that learning performance and memory were predicted by brain size, whereas differences in efficient learning strategies were not. We conclude that variation in brain size and neuron number is important for variation in learning performance and memory, but these differences are not great enough to cause the larger differences in efficient learning strategies observed at higher taxonomic levels.


Asunto(s)
Poecilia , Aprendizaje Inverso , Animales , Cognición , Aprendizaje Discriminativo , Tamaño de los Órganos , Recompensa
5.
J Exp Biol ; 222(Pt 19)2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31527178

RESUMEN

Physiological mechanisms determining thermal limits in fishes are debated but remain elusive. It has been hypothesised that motor function loss, observed as loss of equilibrium during acute warming, is due to direct thermal effects on brain neuronal function. To test this, we mounted cooling plates on the heads of Atlantic cod (Gadus morhua) and quantified whether local brain cooling increased whole-organism acute upper thermal tolerance. Brain cooling reduced brain temperature by 2-6°C below ambient water temperature and increased thermal tolerance by 0.5 and 0.6°C on average relative to instrumented and uninstrumented controls, respectively, suggesting that direct thermal effects on brain neurons may contribute to setting upper thermal limits in fish. However, the improvement in thermal tolerance with brain cooling was small relative to the difference in brain temperature, demonstrating that other mechanisms (e.g. failure of spinal and peripheral neurons, or muscle) may also contribute to controlling acute thermal tolerance.


Asunto(s)
Aclimatación/fisiología , Encéfalo/fisiología , Frío , Gadus morhua/fisiología , Animales , Reproducibilidad de los Resultados
6.
Oecologia ; 190(3): 689-702, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31203452

RESUMEN

Increased levels of dissolved carbon dioxide (CO2) drive ocean acidification and have been predicted to increase the energy use of marine fishes via physiological and behavioural mechanisms. This notion is based on a theoretical framework suggesting that detrimental effects on energy use are caused by plasma acid-base disruption in response to hypercapnic acidosis, potentially in combination with a malfunction of the gamma aminobutyric acid type A (GABAA) receptors in the brain. However, the existing empirical evidence testing these effects primarily stems from studies that exposed fish to elevated CO2 for a few days and measured a small number of traits. We investigated a range of energetic traits in juvenile spiny chromis damselfish (Acanthochromis polyacanthus) over 3 months of acclimation to projected end-of-century CO2 levels (~ 1000 µatm). Somatic growth and otolith size and shape were unaffected by the CO2 treatment across 3 months of development in comparison with control fish (~ 420 µatm). Swimming activity during behavioural assays was initially higher in the elevated CO2 group, but this effect dissipated within ~ 25 min following handling. The transient higher activity of fish under elevated CO2 was not associated with a detectable difference in the rate of oxygen uptake nor was it mediated by GABAA neurotransmitter interference because treatment with a GABAA antagonist (gabazine) did not abolish the CO2 treatment effect. These findings contrast with several short-term studies by suggesting that end-of-century levels of CO2 may have negligible direct effects on the energetics of at least some species of fish.


Asunto(s)
Arrecifes de Coral , Agua de Mar , Aclimatación , Animales , Dióxido de Carbono , Peces , Concentración de Iones de Hidrógeno
7.
PNAS Nexus ; 2(6): pgad129, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37346268

RESUMEN

Executive functions are a set of cognitive control processes required for optimizing goal-directed behavior. Despite more than two centuries of research on executive functions, mostly in humans and nonhuman primates, there is still a knowledge gap in what constitutes the mechanistic basis of evolutionary variation in executive function abilities. Here, we show experimentally that size changes in a forebrain structure (i.e. telencephalon) underlie individual variation in executive function capacities in a fish. For this, we used male guppies (Poecilia reticulata) issued from artificial selection lines with substantial differences in telencephalon size relative to the rest of the brain. We tested fish from the up- and down-selected lines not only in three tasks for the main core executive functions: cognitive flexibility, inhibitory control, and working memory, but also in a basic conditioning test that does not require executive functions. Individuals with relatively larger telencephalons outperformed individuals with smaller telencephalons in all three executive function assays but not in the conditioning assay. Based on our findings, we propose that the telencephalon is the executive brain in teleost fish. Together, it suggests that selective enlargement of key brain structures with distinct functions, like the fish telencephalon, is a potent evolutionary pathway toward evolutionary enhancement of advanced cognitive abilities in vertebrates.

8.
Evolution ; 76(1): 128-138, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806770

RESUMEN

Mosaic brain evolution, the change in the size of separate brain regions in response to selection on cognitive performance, is an important idea in the field of cognitive evolution. However, untill now, most of the data on how separate brain regions respond to selection and their cognitive consequences stem from comparative studies. To experimentally investigate the influence of mosaic brain evolution on cognitive ability, we used male guppies artificially selected for large and small telencephalons relative to the rest of the brain. Here, we tested an important aspect of executive cognitive ability using a detour task. We found that males with larger telencephalons outperformed males with smaller telencephalons. Fish with larger telencephalons showed faster improvement in performance during detour training and were more successful in reaching the food reward without touching the transparent barrier (i.e., through correct detouring) during the test phase. Together, our findings provide the first experimental evidence showing that evolutionary enlargement of relative telencephalon size confers cognitive benefits, supporting an important role for mosaic brain evolution during cognitive evolution.


Asunto(s)
Poecilia , Animales , Encéfalo , Cognición , Masculino , Poecilia/fisiología , Telencéfalo
9.
Insect Biochem Mol Biol ; 133: 103495, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171202

RESUMEN

Excess consumption of high-fat diet (HFD) is likely to result in obesity and increases the predisposition to associated health disorders. Drosophila melanogaster has emerged as an important model to study the effects of HFD on metabolism, gut function, behavior, and ageing. In this study, we investigated the effects of HFD on physiology and behavior of female flies at different time-points over several weeks. We found that HFD decreases lifespan, and also with age leads to accelerated decline of climbing ability in both virgins and mated flies. In virgins HFD also increased sleep fragmentation with age. Furthermore, long-term exposure to HFD results in elevated adipokinetic hormone (AKH) transcript levels and an enlarged crop with increased lipid stores. We detected no long-term effects of HFD on body mass, or levels of triacylglycerides (TAG), glycogen or glucose, although fecundity was diminished. However, one week of HFD resulted in decreased body mass and elevated TAG levels in mated flies. Finally, we investigated the role of AKH in regulating effects of HFD during aging. Both with normal diet (ND) and HFD, Akh mutant flies displayed increased longevity compared to control flies. However, both mutants and controls showed shortened lifespan on HFD compared to ND. In flies exposed to ND, fecundity is decreased in Akh mutants compared to controls after one week, but increased after three weeks. However, HFD leads to a similar decrease in fecundity in both genotypes after both exposure times. Thus, long-term exposure to HFD increases AKH signaling, impairs lifespan and fecundity and augments age-related behavioral senescence.


Asunto(s)
Dieta Alta en Grasa , Drosophila melanogaster , Hormonas de Insectos/metabolismo , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Envejecimiento , Animales , Conducta , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Femenino , Fertilidad , Longevidad , Ácido Pirrolidona Carboxílico/metabolismo , Reproducción , Transducción de Señal
10.
Exp Gerontol ; 146: 111218, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33373711

RESUMEN

Cognitive ageing is the general process when certain mental skills gradually deteriorate with age. Across species, there is a pattern of a slower brain structure degradation rate in large-brained species. Hence, having a larger brain might buffer the impact of cognitive ageing and positively affect survival at older age. However, few studies have investigated the link between relative brain size and cognitive ageing at the intraspecific level. In particular, experimental data on how brain size affects brain function also into higher age is largely missing. We used 288 female guppies (Poecilia reticulata), artificially selected for large and small relative brain size, to investigate variation in colour discrimination and behavioural flexibility, at 4-6, 12 and 24 months of age. These ages are particularly interesting since they cover the life span from sexual maturation until maximal life length under natural conditions. We found no evidence for a slower cognitive ageing rate in large-brained females in neither initial colour discrimination nor reversal learning. Behavioural flexibility was predicted by large relative brain size in the youngest group, but the effect of brain size disappeared with increasing age. This result suggests that cognitive ageing rate is faster in large-brained female guppies, potentially due to the faster ageing and shorter lifespan in the large-brained selection lines. It also means that cognition levels align across different brain sizes with older age. We conclude that there are cognitive consequences of ageing that vary with relative brain size in advanced learning abilities, whereas fundamental aspects of learning can be maintained throughout the ecologically relevant life span.


Asunto(s)
Envejecimiento Cognitivo , Poecilia , Animales , Encéfalo , Cognición , Femenino , Tamaño de los Órganos
11.
Sci Adv ; 7(46): eabj4314, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34757792

RESUMEN

The mosaic brain evolution hypothesis, stating that brain regions can evolve relatively independently during cognitive evolution, is an important idea to understand how brains evolve with potential implications even for human brain evolution. Here, we provide the first experimental evidence for this hypothesis through an artificial selection experiment in the guppy (Poecilia reticulata). After four generations of selection on relative telencephalon volume (relative to brain size), we found substantial changes in telencephalon size but no changes in other regions. Further comparisons revealed that up-selected lines had larger telencephalon, while down-selected lines had smaller telencephalon than wild Trinidadian populations. Our results support that independent evolutionary changes in specific brain regions through mosaic brain evolution can be important facilitators of cognitive evolution.

12.
Behav Ecol Sociobiol ; 71(8): 108, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28736477

RESUMEN

ABSTRACT: Levels of dissolved carbon dioxide (CO2) projected to occur in the world's oceans in the near future have been reported to increase swimming activity and impair predator recognition in coral reef fishes. These behavioral alterations would be expected to have dramatic effects on survival and community dynamics in marine ecosystems in the future. To investigate the universality and replicability of these observations, we used juvenile spiny chromis damselfish (Acanthochromis polyacanthus) to examine the effects of long-term CO2 exposure on routine activity and the behavioral response to the chemical cues of a predator (Cephalopholis urodeta). Commencing at ~3-20 days post-hatch, juvenile damselfish were exposed to present-day CO2 levels (~420 µatm) or to levels forecasted for the year 2100 (~1000 µatm) for 3 months of their development. Thereafter, we assessed routine activity before and after injections of seawater (sham injection, control) or seawater-containing predator chemical cues. There was no effect of CO2 treatment on routine activity levels before or after the injections. All fish decreased their swimming activity following the predator cue injection but not following the sham injection, regardless of CO2 treatment. Our results corroborate findings from a growing number of studies reporting limited or no behavioral responses of fishes to elevated CO2. SIGNIFICANCE STATEMENT: Alarmingly, it has been reported that levels of dissolved carbon dioxide (CO2) forecasted for the year 2100 cause coral reef fishes to be attracted to the chemical cues of predators. However, most studies have exposed the fish to CO2 for very short periods before behavioral testing. Using long-term acclimation to elevated CO2 and automated tracking software, we found that fish exposed to elevated CO2 showed the same behavioral patterns as control fish exposed to present-day CO2 levels. Specifically, activity levels were the same between groups, and fish acclimated to elevated CO2 decreased their swimming activity to the same degree as control fish when presented with cues from a predator. These findings indicate that behavioral impacts of elevated CO2 levels are not universal in coral reef fishes.

13.
Behav Ecol ; 26(2): 527-532, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25825587

RESUMEN

Brain size varies dramatically among vertebrates, and selection for increased cognitive abilities is thought to be the key force underlying the evolution of a large brain. Indeed, numerous comparative studies suggest positive relationships between cognitively demanding aspects of behavior and brain size controlled for body size. However, experimental evidence for the link between relative brain size and cognitive ability is surprisingly scarce and to date stems from a single study on brain size selected guppies (Poecilia reticulata), where large-brained females were shown to outperform small-brained females in a numerical learning assay. Because the results were inconclusive for males in that study, we here use a more ecologically relevant test of male cognitive ability to investigate whether or not a relatively larger brain increases cognitive ability also in males. We compared mate search ability of these artificially selected large- and small-brained males in a maze and found that large-brained males were faster at learning to find a female in a maze. Large-brained males decreased the time spent navigating the maze faster than small-brained males and were nearly twice as fast through the maze after 2 weeks of training. Our results support that relatively larger brains are better also for males in some contexts, which further substantiates that variation in vertebrate brain size is generated through the balance between energetic costs and cognitive benefits.

14.
Curr Biol ; 22(15): 1440-3, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22795697

RESUMEN

The evolutionary divergence of sexual signals is often important during the formation of new animal species, but our understanding of the origin of signal diversity is limited [1, 2]. Sensory drive, the optimization of communication signal efficiency through matching to the local environment, has been highlighted as a potential promoter of diversification and speciation [3]. The swordtail characin (Corynopoma riisei) is a tropical fish in which males display a flag-like ornament that elicits female foraging behavior during courtship. We show that the shape of the male ornament covaries with female diet across natural populations. More specifically, natural populations in which the female diet is more dominated by ants exhibit male ornaments more similar to the shape of an ant. Feeding experiments confirm that females habituated to a diet of ants prefer to bite at male ornaments from populations with a diet more dominated by ants. Our results show that the male ornament functions as a "fishing lure" that is diversifying in shape to match local variation in female search images employed during foraging. This direct link between variation in female feeding ecology and the evolutionary diversification of male sexual ornaments suggests that sensory drive may be a common engine of signal divergence.


Asunto(s)
Comunicación Animal , Evolución Biológica , Characidae/genética , Conducta Alimentaria , Caracteres Sexuales , Animales , Hormigas , Dieta , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA