Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Xenotransplantation ; 26(6): e12535, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31293002

RESUMEN

Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs). RNAs of each EC preparation stimulated in various conditions by purified Abs were exhaustively sequenced. EC transcriptomic patterns induced by elicited anti-Neu5Gc Abs, compared with pre-existing ones, were analyzed. qPCR, cytokines/chemokines release, and apoptosis were tested on some EC preparations. The data showed that anti-Neu5Gc Abs induced 967 differentially expressed (DE) genes. Most DE genes are shared following EC activation by pre-existing or anti-human T-cell globulin (ATG)-elicited anti-Neu5Gc Abs. Compared with pre-existing anti-Neu5Gc Abs, which are normal component of ECs environment, elicited anti-Neu5Gc Abs down-regulated 66 genes, including master genes of EC function. Furthermore, elicited anti-Neu5Gc Abs combined with complement-containing serum down-regulated most transcripts mobilized by serum alone. Both types of anti-Neu5Gc Abs-induced a dose- and complement-dependent release of selected cytokines and chemokines. Altogether, these data show that, compared with pre-existing anti-Neu5Gc Abs, ATG-elicited anti-Neu5Gc Abs specifically modulate genes related to cytokine responses, MAPkinase cascades, chemotaxis, and integrins and do not skew the EC transcriptome toward a pro-inflammatory profile in vitro.


Asunto(s)
Anticuerpos/farmacología , Células Endoteliales/efectos de los fármacos , Endotelio/metabolismo , Transcriptoma/genética , Animales , Anticuerpos/inmunología , Células Endoteliales/inmunología , Humanos , Inmunoglobulina G/metabolismo , Transcriptoma/inmunología , Trasplante Heterólogo/métodos
2.
Nat Med ; 28(2): 283-294, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177855

RESUMEN

Bioprosthetic heart valves (BHVs) are commonly used to replace severely diseased heart valves but their susceptibility to structural valve degeneration (SVD) limits their use in young patients. We hypothesized that antibodies against immunogenic glycans present on BHVs, particularly antibodies against the xenoantigens galactose-α1,3-galactose (αGal) and N-glycolylneuraminic acid (Neu5Gc), could mediate their deterioration through calcification. We established a large longitudinal prospective international cohort of patients (n = 1668, 34 ± 43 months of follow-up (0.1-182); 4,998 blood samples) to investigate the hemodynamics and immune responses associated with BHVs up to 15 years after aortic valve replacement. Early signs of SVD appeared in <5% of BHV recipients within 2 years. The levels of both anti-αGal and anti-Neu5Gc IgGs significantly increased one month after BHV implantation. The levels of these IgGs declined thereafter but anti-αGal IgG levels declined significantly faster in control patients compared to BHV recipients. Neu5Gc, anti-Neu5Gc IgG and complement deposition were found in calcified BHVs at much higher levels than in calcified native aortic valves. Moreover, in mice, anti-Neu5Gc antibodies were unable to promote calcium deposition on subcutaneously implanted BHV tissue engineered to lack αGal and Neu5Gc antigens. These results indicate that BHVs manufactured using donor tissues deficient in αGal and Neu5Gc could be less prone to immune-mediated deterioration and have improved durability.


Asunto(s)
Bioprótesis , Galactosa , Animales , Formación de Anticuerpos , Válvula Aórtica/patología , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica , Calcinosis , Humanos , Inmunoglobulina G , Ratones , Polisacáridos , Estudios Prospectivos
3.
J Med Chem ; 64(6): 3367-3380, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33683903

RESUMEN

Achieving selective inhibition of chemokine activity by structurally well-defined heparan sulfate (HS) or HS mimetic molecules can provide important insights into their roles in individual physiological and pathological cellular processes. Here, we report a novel tailor-made HS mimetic, which furnishes an exclusive iduronic acid (IdoA) scaffold with different sulfation patterns and oligosaccharide chain lengths as potential ligands to target chemokines. Notably, highly sulfated-IdoA tetrasaccharide (I-45) exhibited strong binding to CCL2 chemokine thereby blocking CCL2/CCR2-mediated in vitro cancer cell invasion and metastasis. Taken together, IdoA-based HS mimetics offer an alternative HS substrate to generate selective and efficient inhibitors for chemokines and pave the way to a wide range of new therapeutic applications in cancer biology and immunology.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Heparitina Sulfato/química , Heparitina Sulfato/farmacología , Ácido Idurónico/química , Ácido Idurónico/farmacología , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores CCR2/metabolismo
4.
J Mol Biol ; 433(15): 167099, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34119488

RESUMEN

Glycans decorate the cell surface, secreted glycoproteins and glycolipids, and altered glycans are often found in cancers. Despite their high diagnostic and therapeutic potential, however, glycans are polar and flexible molecules that are quite challenging for the development and design of high-affinity binding antibodies. To understand the mechanisms by which glycan neoantigens are specifically recognized by antibodies, we analyze the biomolecular recognition of the tumor-associated carbohydrate antigen CA19-9 by two distinct antibodies using X-ray crystallography. Despite the potential plasticity of glycans and the very different antigen-binding surfaces presented by the antibodies, both structures reveal an essentially identical extended CA19-9 conformer, suggesting that this conformer's stability selects the antibodies. Starting from the bound structure of one of the antibodies, we use the AbLIFT computational algorithm to design a variant with seven core mutations in the variable domain's light-heavy chain interface that exhibits tenfold improved affinity for CA19-9. The results reveal strategies used by antibodies to specifically recognize glycan antigens and show how automated antibody-optimization methods may be used to enhance the clinical potential of existing antibodies.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antígeno CA-19-9/inmunología , Biología Computacional/métodos , Algoritmos , Animales , Anticuerpos Monoclonales/genética , Afinidad de Anticuerpos , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Mutación , Conformación Proteica
5.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007970

RESUMEN

Glycosylation patterns commonly change in cancer, resulting in expression of tumor-associated carbohydrate antigens (TACA). While promising, currently available anti-glycan antibodies are not useful for clinical cancer therapy. Here, we show that potent anti-glycan antibodies can be engineered to acquire cancer therapeutic efficacy. We designed yeast surface display to generate and select for therapeutic antibodies against the TACA SLea (CA19-9) in colon and pancreatic cancers. Elite clones showed increased affinity, better specificity, improved binding of human pancreatic and colon cancer cell lines, and increased complement-dependent therapeutic efficacy. Molecular modeling explained the structural basis for improved antibody functionality at the molecular level. These new tools of directed molecular evolution and selection for effective anti-glycan antibodies, provide insights into the mechanisms of cancer therapy targeting glycosylation, and provide major methodological advances that are likely to open up innovative avenues of research in the field of cancer theranostics.

6.
Nat Commun ; 11(1): 67, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900422

RESUMEN

Certain arenaviruses that circulate in rodent populations can cause life-threatening hemorrhagic fevers when they infect humans. Due to their efficient transmission, arenaviruses pose a severe risk for outbreaks and might be exploited as biological weapons. Effective countermeasures against these viruses are highly desired. Ideally, a single remedy would be effective against many or even all the pathogenic viruses in this family. However, despite the fact that all pathogenic arenaviruses from South America utilize transferrin receptor 1 (TfR1) as a cellular receptor, their viral glycoproteins are highly diversified, impeding efforts to isolate cross-neutralizing antibodies. Here we address this problem using a rational design approach to target TfR1-tropic arenaviruses with high potency and breadth. The pan-reactive molecule is highly effective against all arenaviruses that were tested, offering a universal therapeutic approach. Our design scheme avoids the shortcomings of previous immunoadhesins and can be used to combat other zoonotic pathogens.


Asunto(s)
Infecciones por Arenaviridae/terapia , Arenavirus/inmunología , Inmunoterapia , Receptores de Transferrina/química , Receptores de Transferrina/inmunología , Receptores Virales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/virología , Arenavirus/química , Arenavirus/genética , Diseño de Fármacos , Humanos , Receptores de Transferrina/genética , Receptores Virales/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
7.
Sci Rep ; 8(1): 10786, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018351

RESUMEN

Anti-carbohydrate monoclonal antibodies (mAbs) hold great promise as cancer therapeutics and diagnostics. However, their specificity can be mixed, and detailed characterization is problematic, because antibody-glycan complexes are challenging to crystallize. Here, we developed a generalizable approach employing high-throughput techniques for characterizing the structure and specificity of such mAbs, and applied it to the mAb TKH2 developed against the tumor-associated carbohydrate antigen sialyl-Tn (STn). The mAb specificity was defined by apparent KD values determined by quantitative glycan microarray screening. Key residues in the antibody combining site were identified by site-directed mutagenesis, and the glycan-antigen contact surface was defined using saturation transfer difference NMR (STD-NMR). These features were then employed as metrics for selecting the optimal 3D-model of the antibody-glycan complex, out of thousands plausible options generated by automated docking and molecular dynamics simulation. STn-specificity was further validated by computationally screening of the selected antibody 3D-model against the human sialyl-Tn-glycome. This computational-experimental approach would allow rational design of potent antibodies targeting carbohydrates.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Modelos Moleculares , Animales , Especificidad de Anticuerpos , Antígenos de Carbohidratos Asociados a Tumores/química , Células Cultivadas , Simulación por Computador , Células HEK293 , Humanos , Ratones , Simulación de Dinámica Molecular
8.
Oncotarget ; 8(68): 112236-112244, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29348821

RESUMEN

Humans have circulating antibodies against diverse glycans containing N-glycolylneuraminic acid (Neu5Gc) due to function-loss mutation of the CMAH gene. This xenogenic non-human carbohydrate is abundant in red meat, xenografts and biotherapeutics. Low levels of diet-derived Neu5Gc is also present on normal human endothelial cells, and together with anti-Neu5Gc antibodies could potentially mediate "xenosialitis" chronic-inflammation. Rabbit anti-human thymocyte globulin (ATG) is a drug containing polyclonal IgG glycoproteins commonly used as an immunosuppressant in human transplantation and autoimmune diseases. In type-1 diabetes patients, infusion of Neu5Gc-glycosylated ATG caused increased global anti-Neu5Gc response. Here, for the first time we explore changes in anti-Neu5Gc IgG repertoire following the immunization elicited by ATG, compared with the basal antibodies repertoire that reflect exposure to dietary-Neu5Gc. We used glycan microarrays with multiple Neu5Gc-glycans and controls to elucidate eventual differences in ATG-elicited repertoire, before/after ATG administration and track their kinetics (0, 1, 18 and 24 months). Response of all basal-pre-existing Neu5Gc-specific antibodies rapidly increased. This response peaked at one month post-ATG, with enhanced affinity, then resolved at 18-24 months. Induced-antibodies showed expanded diversity and de-novo recognition of different Neu5Gc-glycans, including endogenous glycolipids, that was further validated by affinity-purified anti-Neu5Gc antibodies from patients' sera. These findings strongly suggest that ATG-induced anti-Neu5Gc IgGs represent a secondary exposure to this dietary carbohydrate-antigen in humans, with immune memory. Given their modified recognition patterns, ATG-evoked anti-Neu5Gc antibodies could potentially mediate biological effects different from pre-existing antibodies.

9.
Carbohydr Res ; 389: 115-22, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24680512

RESUMEN

Glycans at the forefront of cells facilitate immune recognition processes. Cancer cells commonly present altered cell surface glycosylation, especially manifested in the expression of sialic acid at the termini of glycolipids and glycoproteins. Although tumor-associated carbohydrate antigens (TACAs) result in expression of altered-self, most such carbohydrates do not elicit strong humoral responses. Various strategies had been devised to elicit increased immunogenicity of such TACA aiming for potent immunotherapeutic antibodies or cancer vaccines. However some carbohydrates are immunogenic in humans and hold potential for novel glycotherapies. N-Glycolylneuraminic acid (Neu5Gc) is a foreign immunogenic sugar in humans originating from the diet (e.g., red meat) and subsequently expressed on the cell surface, especially accumulating on carcinoma. Consequently, the human immune system detects this non-self carbohydrate generating a broad anti-Neu5Gc antibody response. The co-existence of Neu5Gc/anti-Neu5Gc within humans spurs chronic inflammation mediated disease, including cancer. Concurrently, anti-Neu5Gc antibodies hold potential for novel targeted therapy. αGal is another foreign immunogenic carbohydrate antigen in humans and all humans have circulating anti-Gal antibodies. This review aims to describe the immunogenicity of Neu5Gc and its implications for human diseases, highlighting differences and similarities with αGal and its potential for novel targeted theranostics.


Asunto(s)
Inmunidad , Polisacáridos/metabolismo , Humanos , Neoplasias/inmunología , Polisacáridos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA