Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 51(21): 11941-11951, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37897358

RESUMEN

Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.


Asunto(s)
Bacillus cereus , Bacteriófagos , Antivirales , Bacterias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN , ADN Helicasas/metabolismo , Proteínas , Bacillus cereus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Glycoconj J ; 40(6): 621-630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921922

RESUMEN

In this study we observed that human GD1c/GT1a/GQ1b synthase (hST8Sia V) is particularly expressed in human glioblastoma cells. To address the mechanism regulating human glioblastoma-specific gene expression of the hST8Sia V, after the transcription start site (TSS) was identified by the 5'-rapid amplification of cDNA end with total RNA from human glioblastoma U87MG cells, the 5'-flanking region (2.5 kb) of the hST8Sia V gene was isolated and its promoter activity was examined. By luciferase reporter assay, this 5'-flanking region revealed strong promoter activity in only U-87MG cells, but not in other tissue-derived cancer cells. 5'-deletion mutant analysis showed that the region from -1140 to -494 is crucial for transcription of the hST8Sia V gene in U87MG cells. This region contains the activator protein-1 (AP-1) binding site, the main target of the c-Jun N-terminal kinase (JNK) downstream. The AP-1 binding site at -1043/-1037 was proved to be indispensable for the hST8Sia V gene-specific expression in U87MG cells by site-directed mutagenesis. Moreover, the transcriptional activation of hST8Sia V gene in U87MG cells was strongly inhibited by a specific JNK inhibitor, SP600125. These results suggest that the hST8Sia V gene-specific expression in U87MG cells is controlled by JNK/AP-1 signaling pathway.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Factor de Transcripción AP-1/genética , Regiones Promotoras Genéticas/genética , Activación Transcripcional
3.
Nucleic Acids Res ; 48(17): 9959-9968, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32810226

RESUMEN

The CRISPR-Cas system provides adaptive immunity for bacteria and archaea to combat invading phages and plasmids. Phages evolved anti-CRISPR (Acr) proteins to neutralize the host CRISPR-Cas immune system as a counter-defense mechanism. AcrIF7 in Pseudomonas aeruginosa prophages strongly inhibits the type I-F CRISPR-Cas system. Here, we determined the solution structure of AcrIF7 and identified its target, Cas8f of the Csy complex. AcrIF7 adopts a novel ß1ß2α1α2ß3 fold and interacts with the target DNA binding site of Cas8f. Notably, AcrIF7 competes with AcrIF2 for the same binding interface on Cas8f without common structural motifs. AcrIF7 binding to Cas8f is driven mainly by electrostatic interactions that require position-specific surface charges. Our findings suggest that Acrs of divergent origin may have acquired specificity to a common target through convergent evolution of their surface charge configurations.


Asunto(s)
Bacteriófagos/química , Sistemas CRISPR-Cas , Proteínas Virales/química , Bacteriófagos/genética , Bacteriófagos/patogenicidad , Sitios de Unión , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Proteínas Virales/metabolismo
4.
Nucleic Acids Res ; 48(13): 7584-7594, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32544231

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide adaptive immunity to prokaryotes against invading phages and plasmids. As a countermeasure, phages have evolved anti-CRISPR (Acr) proteins that neutralize the CRISPR immunity. AcrIIA5, isolated from a virulent phage of Streptococcus thermophilus, strongly inhibits diverse Cas9 homologs, but the molecular mechanism underlying the Cas9 inhibition remains unknown. Here, we report the solution structure of AcrIIA5, which features a novel α/ß fold connected to an N-terminal intrinsically disordered region (IDR). Remarkably, truncation of the N-terminal IDR abrogates the inhibitory activity against Cas9, revealing that the IDR is essential for Cas9 inhibition by AcrIIA5. Progressive truncations and mutations of the IDR illustrate that the disordered region not only modulates the association between AcrIIA5 and Cas9-sgRNA, but also alters the catalytic efficiency of the inhibitory complex. The length of IDR is critical for the Cas9-sgRNA recognition by AcrIIA5, whereas the charge content of IDR dictates the inhibitory activity. Conformational plasticity of IDR may be linked to the broad-spectrum inhibition of Cas9 homologs by AcrIIA5. Identification of the IDR as the main determinant for Cas9 inhibition expands the inventory of phage anti-CRISPR mechanisms.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Virales/química , Bacteriófagos/química , Bacteriófagos/patogenicidad , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Dominios Proteicos , Streptococcus thermophilus/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Glycoconj J ; 37(6): 681-690, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33108606

RESUMEN

In this study, we found that gene expression of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was specifically increased during differentiation of human MG-63 osteoblastic cells by serum starvation (SS). In parallel, a distinct increase in binding to SNA, the α2,6-sialyl-specific lectin, was observed in serum-starved cells, as demonstrated by FACS analysis. 5'-Rapid amplification of cDNA ends analysis demonstrated that the increase of hST6Gal I transcript by SS is mediated by P1 promoter. To elucidate transcriptional regulation of hST6Gal I in SS-induced MG-63 cells, we functionally characterized the P1 promoter region of the hST6Gal I gene. The 5'-deletion analysis of P1 promoter region revealed that the 189 bp upstream region of transcription start site is critical for transcriptional activity of hST6Gal I gene in SS-induced MG-63 cells. This region contains the predicted binding sites for several transcription factors, including AREB6, FOXP1, SIX3, HNF1, YY2, and MOK2. The mutagenesis analysis for these sites and chromatin immunoprecipitation assay demonstrated that the YY2 binding site at -98 to -77 was essential for the SS-induced hST6Gal I gene expression during differentiation of MG-63 cells.


Asunto(s)
Antígenos CD/genética , Diferenciación Celular/genética , Osteoblastos/citología , Sialiltransferasas/genética , Transcripción Genética , Proteínas de Unión al ADN/genética , Proteínas del Ojo/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas del Tejido Nervioso/genética , Osteoblastos/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Proteína Homeobox SIX3
6.
Nucleic Acids Res ; 46(1): 485-492, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29182776

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide bacteria with RNA-based adaptive immunity against phage infection. To counteract this defense mechanism, phages evolved anti-CRISPR (Acr) proteins that inactivate the CRISPR-Cas systems. AcrIIA1, encoded by Listeria monocytogenes prophages, is the most prevalent among the Acr proteins targeting type II-A CRISPR-Cas systems and has been used as a marker to identify other Acr proteins. Here, we report the crystal structure of AcrIIA1 and its RNA-binding affinity. AcrIIA1 forms a dimer with a novel two helical-domain architecture. The N-terminal domain of AcrIIA1 exhibits a helix-turn-helix motif similar to transcriptional factors. When overexpressed in Escherichia coli, AcrIIA1 associates with RNAs, suggesting that AcrIIA1 functions via nucleic acid recognition. Taken together, the unique structural and functional features of AcrIIA1 suggest its distinct mode of Acr activity, expanding the diversity of the inhibitory mechanisms employed by Acr proteins.


Asunto(s)
Listeria monocytogenes/virología , Modelos Moleculares , Profagos/metabolismo , Dominios Proteicos , Proteínas Virales/química , Secuencia de Aminoácidos , Sistemas CRISPR-Cas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Secuencias Hélice-Giro-Hélice , Mutación , Profagos/genética , Unión Proteica , Multimerización de Proteína , ARN/química , ARN/genética , ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
Mol Pharm ; 14(8): 2518-2528, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28207270

RESUMEN

Design and development of amphiphilic block copolymer-based nanocarriers exhibiting enhanced colloidal stability upon dilution in the blood and cellular glutathione-responsive rapid drug release is highly desired for tumor-targeting chemotherapy. Herein, we report a novel ABA-type triblock copolymer consisting of a hydrophilic central poly(ethylene glycol) block and two terminal hydrophobic blocks of a polymethacrylate having pendant disulfides (PHMssEt), thus PHMssEt-b-PEG-b-PHMssEt (ssTP). Aqueous self-assembly and the following disulfide-exchange reaction of the resulting ssTP allow for formation of core-cross-linked micelles (CCMs) through the formation of new disulfide linkages, retaining enhanced colloidal stability in physiological conditions and in the presence of proteins. Further, they exhibit reduction-responsive enhanced release of encapsulated drugs in response to cellular concentrations of glutathione in cancer cells, confirmed by dynamic light scattering and spectroscopic analysis. Combined with these results, in vitro (cells) and in vivo (mouse model) biological results suggest that ssTP-based CCMs are effective candidates as intracellular nanocarriers targeting tumors for cancer therapy.


Asunto(s)
Portadores de Fármacos/química , Glutatión/química , Polímeros/química , Micelas
8.
Macromol Rapid Commun ; 38(8)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28221703

RESUMEN

A new multiblock copolymer self-healing strategy is reported that centers on the synthesis of block copolymers designed with different self-healing motifs incorporated into individual blocks. As a proof of concept, a novel pentablock copolymer (ABCBA) consisting of a poly(ethylene glycol) middle block and self-healable symmetric blocks of a polymethacrylate with pendant disulfide linkages and carboxylic acids is synthesized by a combination of consecutive controlled radical polymerization with hydrolytic cleavage. Disulfide exchange reactions of pendant disulfide linkages and metal-ligand interactions of pendant carboxylic acids with ferric ions allow for the formation of dual crosslinked networks with dynamic disulfide and supramolecular crosslinkages. The resultant networks possessing self-healing viscoelasticity enable self-healing on macroscale damages through supramolecular metal-ligand interactions and disulfide exchange reactions at room or moderate temperatures. These preliminary results suggest that the strategy can offer the versatility in the development of multifunctional self-healable materials in dual or multiple self-healable mechanisms.


Asunto(s)
Ácidos Carboxílicos/química , Disulfuros/química , Polietilenglicoles/química , Polímeros/química , Ácidos Polimetacrílicos/química , Reactivos de Enlaces Cruzados/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Estructura Molecular , Polimerizacion , Polímeros/síntesis química , Espectroscopía de Protones por Resonancia Magnética , Temperatura , Viscosidad
9.
J Phys Ther Sci ; 29(3): 384-386, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28356615

RESUMEN

[Purpose] This study examined the effect of belly dancing on the urinary incontinence-related muscles and vaginal pressure in middle-aged women to provide fundamental data for establishing an effective training program focusing on mitigating and preventing urinary incontinence. [Subjects and Methods] The subjects included 24 middle-aged women, who have been diagnosed with urinary incontinence. The subjects were randomly divided into two groups, viz. the experimental group (N=12) and control group (N=12). The experimental group underwent a belly dancing program focusing on pelvis moves. [Results] In the experimental group, the urinary incontinence-related muscle strength and vaginal pressure were increased, while the control group showed no significant change. [Conclusion] Belly dancing focusing on pelvis moves had a positive effect on the urinary incontinence-related muscle strength and vaginal pressure, suggesting that a recreational dance program focusing on pelvic exercise can be used to prevent and relieve the symptoms of urinary incontinence as a non-surgical treatment.

10.
Macromol Rapid Commun ; 37(8): 705-10, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26890479

RESUMEN

A new approach to stabilize carbon nanotubes (CNTs) in aqueous solution with a reduction-responsive water-soluble polymer is reported. The novel polymer synthesized by a controlled radical polymerization is functionalized with pendant pyrene groups capable of adhering to the surface of CNTs through π-π noncovalent interactions, and labeled with disulfide linkages to exhibit reduction-responsive cleavage. Upon the cleavage of junction disulfide linkages in a reducing environment, water-soluble polymers are shed, retaining clean CNT surfaces for electrochemical catalytic reactions.


Asunto(s)
Nanotubos de Carbono/química , Polímeros/química , Disulfuros/química , Pirenos/química , Solubilidad , Compuestos de Sulfhidrilo/química , Agua
11.
Macromol Rapid Commun ; 36(13): 1255-60, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25959750

RESUMEN

Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials.


Asunto(s)
Disulfuros/química , Radicales Libres/química , Polímeros/síntesis química , Compuestos de Sulfhidrilo/química , Sulfuros/química , Química Clic , Elasticidad , Cinética , Oxidación-Reducción , Polimerizacion , Temperatura , Viscosidad
12.
Macromol Rapid Commun ; 35(7): 752-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24497107

RESUMEN

The synthesis, tunable thermoresponsive properties, and self-assembly of dual redox and thermoresponsive double hydrophilic block copolymers having pendant disulfide linkages (DHBCss) are reported. Well-defined DHBCss composed of a hydrophilic poly(ethylene oxide) block and a dual thermo- and reduction-responsive random copolymer block containing pendant disulfide linkages are synthesized by atom transfer radical polymerization. Their lower critical solution temperature (LCST) transitions are adjusted through modulating pendant hydrophobic-hydrophilic balance with disulfide-thiol-sulfide chemistry. Further, these DHBCss derivatives are converted to disulfide-crosslinked nanogels at temperatures above LCST through temperature-driven self-assembly and in situ disulfide crosslinking. They exhibit enhanced colloidal stability and further reduction-responsive degradability, thus demonstrating versatility of dual thermo- and reduction-responsive smart materials.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Polímeros/síntesis química , Temperatura , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
13.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662302

RESUMEN

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proyección Neuronal , Animales , Proyección Neuronal/efectos de los fármacos , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neuritas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fosforilación/efectos de los fármacos , Flavonoides/farmacología , Flavonas/farmacología , Flavonas/química , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Línea Celular
14.
Genes Genomics ; 45(7): 901-909, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231294

RESUMEN

BACKGROUND: In this study, we observed that in human colon carcinoma HCT116 cells mRNA level of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was decreased by curcumin. FACS analysis using the α2,6-sialyl-specific lectin (SNA) also showed a noticeable decrease in binding to SNA by curcumin. OBJECTIVE: To investigate the mechanism for curcumin-triggered downregulation of hST6Gal I transcription. METHODS: The mRNA levels of nine kinds of hST genes were assessed by RT-PCR after curcumin was treated in HCT116 cells. The level of hST6Gal I product on cell surface was examined by flow cytometry analysis. Luciferase reporter plasmids with 5'-deleted constructs and mutants of the hST6Gal I promoter were transiently transfected into HCT116 cells, and the luciferase activity was measured after treatment with curcumin. RESULTS: Curcumin led to significant transcriptional repression of the hST6Gal I promoter. Promoter analysis using deletion mutants proved that the - 303 to - 189 region of the hST6Gal I promoter is required for transcriptional repression in response to curcumin. Among putative binding sites for transcription factors IK2, GATA1, TCF12, TAL1/E2A, SPT, and SL1 in this region, by site-directed mutagenesis analysis the TAL/E2A binding site (nucleotides - 266/- 246) was proved to be crucial for curcumin-triggered downregulation of hST6Gal I transcription in HCT116 cells. The transcription activity of hST6Gal I gene in HCT116 cells was markedly suppressed by compound C, an AMP-activated protein kinase (AMPK) inhibitor. CONCLUSION: These indicate that gene expression of hST6Gal I in HCT116 cells is controlled through AMPK/TAL/E2A signal pathway.


Asunto(s)
Carcinoma , Neoplasias del Colon , Curcumina , Humanos , Curcumina/farmacología , Proteínas Quinasas Activadas por AMP , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Células HCT116 , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , ARN Mensajero/genética , Luciferasas
15.
Adv Sci (Weinh) ; 10(27): e2302932, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37455678

RESUMEN

This present study illustrates the synthesis and preparation of polyoxanorbornene-based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring-opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li-ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10-4 S cm-1 at room temperature and excellent electrochemical performance, including high-rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4 cathode. The new design paradigm, which has dual ionic conductive pathways, provides an unexplored avenue for inventing new SPEs and emphasizes the importance of molecular engineering to develop highly stable and conductive polymer electrolytes for lithium-metal batteries (LMB).

16.
PLoS One ; 18(11): e0293321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917776

RESUMEN

In this study, we have firstly elucidated that serum starvation augmented the levels of human GD3 synthase (hST8Sia I) gene and ganglioside GD3 expression as well as bone morphogenic protein-2 and osteocalcin expression during MG-63 cell differentiation using RT-PCR, qPCR, Western blot and immunofluorescence microscopy. To evaluate upregulation of hST8Sia I gene during MG-63 cell differentiation by serum starvation, promoter area of the hST8Sia I gene was functionally analyzed. Promoter analysis using luciferase reporter assay system harboring various constructs of the hST8Sia I gene proved that the cis-acting region at -1146/-646, which includes binding sites of the known transcription factors AP-1, CREB, c-Ets-1 and NF-κB, displays the highest level of promoter activity in response to serum starvation in MG-63 cells. The -731/-722 region, which contains the NF-κB binding site, was proved to be essential for expression of the hST8Sia I gene by serum starvation in MG-63 cells by site-directed mutagenesis, NF-κB inhibition, and chromatin immunoprecipitation (ChIP) assay. Knockdown of hST8Sia I using shRNA suggested that expressions of hST8Sia I and GD3 have no apparent effect on differentiation of MG-63 cells. Moreover, the transcriptional activation of hST8Sia I gene by serum starvation was strongly hindered by SB203580, a p38MAPK inhibitor in MG-63 cells. From these results, it has been suggested that transcription activity of hST8Sia I gene by serum starvation in human osteosarcoma MG-63 cells is regulated by p38MAPK/NF-κB signaling pathway.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , FN-kappa B , Humanos , Activación Transcripcional , Regulación hacia Arriba , FN-kappa B/metabolismo , Diferenciación Celular/genética , Expresión Génica
17.
ACS Nano ; 17(21): 21912-21922, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37851525

RESUMEN

Nucleic acids extracted from biomass have emerged as sustainable and environmentally friendly building blocks for the fabrication of multifunctional materials. Until recently, the fabrication of biomass nucleic acid-based structures has been facilitated through simple crosslinking of biomass nucleic acids, which limits the possibility of material properties engineering. This study presents an approach to convert biomass RNA into an acrylic crosslinker through acyl imidazole chemistry. The number of acrylic moieties on RNA was engineered by varying the acylation conditions. The resulting RNA crosslinker can undergo radical copolymerization with various acrylic monomers, thereby offering a versatile route for creating materials with tunable properties (e.g., stiffness and hydrophobic characteristics). Further, reversible-deactivation radical polymerization methods, such as atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT), were also explored as additional approaches to engineer the hydrogel properties. The study also demonstrated the metallization of the biomass RNA-based material, thereby offering potential applications in enhancing electrical conductivity. Overall, this research expands the opportunities in biomass-based biomaterial fabrication, which allows tailored properties for diverse applications.


Asunto(s)
Ácidos Nucleicos , Polímeros , Polímeros/química , ARN , Polimerizacion , Biomasa
18.
Macromolecules ; 56(23): 9626-9635, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38105929

RESUMEN

Gradient poly(methyl methacrylate/n-butyl acrylate) copolymers, P(MMA/BA), with various compositional ratios, were grafted from surface-modified silica nanoparticles (SiO2-g-PMMA-grad-PBA) via complete conversion surface-initiated activator regenerated by electron transfer (SI-ARGET) atom transfer radical polymerization (ATRP). Miniemulsion as the reaction medium effectively confined the interparticle brush coupling within micellar compartments, preventing macroscopic gelation and enabling complete conversion. Isolation of dispersed and gelled fractions revealed dispersed particle brushes to feature a higher Young's modulus, toughness, and ultimate strain compared with those of the "gel" counterparts. Upon purification, brush nanoparticles from the dispersed phase formed uniform microstructures. Uniaxial tension testing revealed a "mechanical synergy" for copolymers with MMA/BA = 3:2 molar ratio to concurrently exhibit higher toughness and stiffness. When compared with linear analogues of similar composition, the brush nanoparticles with gradient copolymers had better mechanical properties, attributed to the synergistic effects of the combination of composition and propagation orientation, highlighting the significance of architectural design for tethered brush layers of such hybrid materials.

19.
ACS Mater Lett ; 5(10): 2594-2603, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37800127

RESUMEN

High-nickel layered oxides, e.g., LiNi0.8Co0.1Mn0.1O2 (NCM811), are promising candidates for cathode materials in high-energy-density lithium-ion batteries (LIBs). Complementing the notable developments of modification of active materials, this study focused on the polymer binder materials, and a new synthetic route was developed to engineer PVDF binders by covalently grafting copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) with multiple functionalities using atom transfer radical polymerization (ATRP). The grafted random copolymer binder provided excellent flexibility (319% elongation), adhesion strength (50 times higher than PVDF), transition metal chelation capability, and efficient ionic conductivity pathways. The NCM811 half-cells using the designed binders exhibited a remarkable rate capability of 143.4 mA h g-1 at 4C and cycling stability with 70.1% capacity retention after 230 cycles at 0.5 C, which is much higher than the 52.3% capacity retention of nonmodified PVDF. The well-retained structure of NCM811 with the designed binder was systematically studied and confirmed by post-mortem analysis.

20.
ACS Appl Mater Interfaces ; 14(37): 42298-42307, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36083595

RESUMEN

Organic electrodes are promising candidates for next-generation lithium-ion batteries due to their low cost and sustainable nature; however, they often suffer from very low conductivity and active material loadings. The conventional binder used in organic-based Li-ion batteries is poly(vinylidene fluoride) (PVDF), yet it is electrochemically inactive and thus occupies volume and mass without storing energy. Here, we report an organic mixed ionic-electronic conducting polymer, poly[norbornene-1,2-bis(C(O)OPEDOT)]25-b-[norbornene-1,2-bis-(C(O)PEG12)]25 denoted PEDOT-b-PEG for simplicity, as a cathode binder to address the aforementioned issues. The polymer contains a poly(3,4-ethylenedioxythiophene) (PEDOT) functionality to provide electronic conductivity, as well as poly(ethylene glycol) (PEG) chains to impart ionic conductivity to the cathode composite. We compare electrodes containing a perylene diimide (PDI) active material, conductive carbon, and a polymeric binder (either PVDF or PEDOT-b-PEG) with different weight ratios to study the impact of active material loading and type of binder on the performance of the cell. The lithium-ion cells prepared with the PEDOT-b-PEG polymer binder result in higher capacities and decreased impedance at all active material loadings compared to cathodes prepared with the PVDF-containing electrodes, demonstrating potential as a new binder to achieve higher active material loadings in organic electrodes. The strategy of preparing these polymers should be broadly applicable to other classes of mixed polymer conductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA