Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995029

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory illness (ARI) in older adults. Optimizing diagnosis could improve understanding of RSV burden. METHODS: We enrolled adults ≥50 years of age hospitalized with ARI and adults of any age hospitalized with congestive heart failure or chronic obstructive pulmonary disease exacerbations at two hospitals during two respiratory seasons (2018-2020). We collected nasopharyngeal (NP) and oropharyngeal (OP) swabs (n=1558), acute and convalescent sera (n=568), and expectorated sputum (n=153) from participants, and recorded standard-of-care (SOC) NP results (n=805). We measured RSV antibodies by two immunoassays and performed BioFire testing on respiratory specimens. RESULTS: Of 1,558 eligible participants, 92 (5.9%) tested positive for RSV by any diagnostic method. Combined NP/OP PCR yielded 58 positives, while separate NP and OP testing identified 11 additional positives (18.9% increase). Compared to Study NP/OP PCR alone, the addition of paired serology increased RSV detection by 42.9% (28 vs 40) among those with both specimen types, while the addition of SOC swab RT-PCR results increased RSV detection by 25.9% (47 vs 59). CONCLUSIONS: The addition of paired serology testing, SOC swab results, and separate testing of NP and OP swabs improved RSV diagnostic yield in hospitalized adults.

2.
Lancet ; 401(10389): 1669-1680, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37086744

RESUMEN

BACKGROUND: Early-life severe respiratory syncytial virus (RSV) infection has been associated with the onset of childhood wheezing illnesses. However, the relationship between RSV infection during infancy and the development of childhood asthma is unclear. We aimed to assess the association between RSV infection during infancy and childhood asthma. METHODS: INSPIRE is a large, population-based, birth cohort of healthy infants with non-low birthweight born at term between June and December, 2012, or between June and December, 2013. Infants were recruited from 11 paediatric practices across middle Tennessee, USA. We ascertained RSV infection status (no infection vs infection) in the first year of life using a combination of passive and active surveillance with viral identification through molecular and serological techniques. Children were then followed up prospectively for the primary outcome of 5-year current asthma, which we analysed in all participants who completed 5-year follow-up. Statistical models, which were done for children with available data, were adjusted for child's sex, race and ethnicity, any breastfeeding, day-care attendance during infancy, exposure to second-hand smoke in utero or during early infancy, and maternal asthma. FINDINGS: Of 1946 eligible children who were enrolled in the study, 1741 (89%) had available data to assess RSV infection status in the first year of life. The proportion of children with RSV infection during infancy was 944 (54%; 95% CI 52-57) of 1741 children. The proportion of children with 5-year current asthma was lower among those without RSV infection during infancy (91 [16%] of 587) than those with RSV infection during infancy (139 [21%] of 670; p=0·016). Not being infected with RSV during infancy was associated with a 26% lower risk of 5-year current asthma than being infected with RSV during infancy (adjusted RR 0·74, 95% CI 0·58-0·94, p=0·014). The estimated proportion of 5-year current asthma cases that could be prevented by avoiding RSV infection during infancy was 15% (95% CI 2·2-26·8). INTERPRETATION: Among healthy children born at term, not being infected with RSV in the first year of life was associated with a substantially reduced risk of developing childhood asthma. Our findings show an age-dependent association between RSV infection during infancy and childhood asthma. However, to definitively establish causality, the effect of interventions that prevent, delay, or decrease the severity of the initial RSV infection on childhood asthma will need to be studied. FUNDING: US National Institutes of Health.


Asunto(s)
Asma , Infecciones por Virus Sincitial Respiratorio , Femenino , Niño , Lactante , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estudios de Cohortes , Estudios Prospectivos , Cohorte de Nacimiento , Asma/epidemiología , Asma/etiología , Asma/prevención & control , Ruidos Respiratorios/etiología , Factores de Riesgo
3.
J Virol ; 97(3): e0147222, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36815771

RESUMEN

Respiratory syncytial virus (RSV) has a significant health burden in children, older adults, and the immunocompromised. However, limited effort has been made to identify emergence of new RSV genotypes' frequency of infection and how the combination of nasopharyngeal microbiome and viral genotypes impact RSV disease outcomes. In an observational cohort designed to capture the first infant RSV infection, we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes, during which the 2012/2013 season was dominated by RSV-A, whereas 2013 and 2014 was dominated by RSV-B. We found non-G-72nt-duplicated RSV-A strains were more frequent in male infants (P = 0.02), whereas G-72nt-duplicated genotypes (which is ON1 lineage) were seen equally in both males and females. DESeq2 testing of the nasal microbiome showed Haemophilus was significantly more abundant in infants with RSV-A infection compared to infants with RSV-B infection (adjusted P = 0.002). In addition, the broad microbial clustering of the abundant genera was significantly associated with infant sex (P = 0.03). Overall, we show sex differences in infection by RSV genotype and host nasopharyngeal microbiome, suggesting an interaction between host genetics, virus genotype, and associated nasopharyngeal microbiome. IMPORTANCE Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infections in young children and is responsible for high hospitalization rates and morbidity in infants and the elderly. To understand how the emergence of RSV viral genotypes and viral-respiratory microbiome interactions contribute to infection frequency and severity, we utilized an observational cohort designed to capture the first infant RSV infection we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes. We found non-G-72nt-duplicated RSV-A genotypes were more frequent in male infants, whereas G-72nt-duplicated RSV-A strains (ON1 lineage) were seen equally in both males and females. Microbiome analysis show Haemophilus was significantly more abundant in infants with RSV-A compared to infants with RSV-B infection and the microbial clustering of the abundant genera was associated with infant sex. Overall, we show sex differences in RSV genotype-nasopharyngeal microbiome, suggesting an interaction host genetics-virus-microbiome interaction.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota , Nasofaringe , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Femenino , Humanos , Lactante , Masculino , Genotipo , Microbiota/genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Factores Sexuales , Nasofaringe/microbiología , Interacciones Microbiota-Huesped/fisiología
4.
J Infect Dis ; 227(10): 1194-1202, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375000

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is associated with acute respiratory infection. We sought to identify RSV variants associated with prolonged infection. METHODS: Among healthy term infants we identified those with prolonged RSV infection and conducted (1) a human genome-wide association study (GWAS) to test the dependence of infection risk on host genotype, (2) a viral GWAS for association with prolonged RSV infection using RSV whole-genome sequencing, (3) an analysis of all viral public sequences, (4) an assessment of immunological responses, and (5) a summary of all major functional data. Analyses were adjusted for viral/human population structure and host factors associated with infection risk. RESULTS: We identified p.E123K/D and p.P218T/S/L in G protein that were associated with prolonged infection (Padj = .01). We found no evidence of host genetic risk for infection. The RSV variant positions approximate sequences that could bind a putative viral receptor, heparan sulfate. CONCLUSIONS: Using analysis of both viral and host genetics we identified a novel RSV variant associated with prolonged infection in otherwise healthy infants and no evidence supporting host genetic susceptibility to infection. As the capacity of RSV for chronicity and its viral reservoir are not defined, these findings are important for understanding the impact of RSV on chronic disease and endemicity.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/genética , Cohorte de Nacimiento , Estudio de Asociación del Genoma Completo , Virus Sincitial Respiratorio Humano/genética , Predisposición Genética a la Enfermedad
5.
J Allergy Clin Immunol ; 149(3): 966-976, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34534566

RESUMEN

BACKGROUND: The risk factors determining short- and long-term morbidity following acute respiratory infection (ARI) due to respiratory syncytial virus (RSV) in infancy remain poorly understood. OBJECTIVES: Our aim was to examine the associations of the upper respiratory tract (URT) microbiome during RSV ARI in infancy with the acute local immune response and short- and long-term clinical outcomes. METHODS: We characterized the URT microbiome by 16S ribosomal RNA sequencing and assessed the acute local immune response by measuring 53 immune mediators with high-throughput immunoassays in 357 RSV-infected infants. Our short- and long-term clinical outcomes included several markers of disease severity and the number of wheezing episodes in the fourth year of life, respectively. RESULTS: We found several specific URT bacterial-immune mediator associations. In addition, the Shannon ⍺-diversity index of the URT microbiome was associated with a higher respiratory severity score (ß =.50 [95% CI = 0.13-0.86]), greater odds of a lower ARI (odds ratio = 1.63 [95% CI = 1.10-2.43]), and higher number of wheezing episodes in the fourth year of life (ß = 0.89 [95% CI = 0.37-1.40]). The Jaccard ß-diversity index of the URT microbiome differed by level of care required (P = .04). Furthermore, we found an interaction between the Shannon ⍺-diversity index of the URT microbiome and the first principal component of the acute local immune response on the respiratory severity score (P = .048). CONCLUSIONS: The URT microbiome during RSV ARI in infancy is associated with the acute local immune response, disease severity, and number of wheezing episodes in the fourth year of life. Our results also suggest complex URT bacterial-immune interactions that can affect the severity of the RSV ARI.


Asunto(s)
Microbiota , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Lactante , Ruidos Respiratorios/etiología , Sistema Respiratorio , Infecciones del Sistema Respiratorio/complicaciones
6.
J Allergy Clin Immunol ; 150(3): 612-621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35283139

RESUMEN

BACKGROUND: The impact of breast-feeding on certain childhood respiratory illnesses remains controversial. OBJECTIVE: We sought to examine the effect of exclusive breast-feeding on the early-life upper respiratory tract (URT) and gut microbiome, the URT immune response in infancy, and the risk of common pediatric respiratory diseases. METHODS: We analyzed data from a birth cohort of healthy infants with prospective ascertainment of breast-feeding patterns and common pediatric pulmonary and atopic outcomes. In a subset of infants, we also characterized the URT and gut microbiome using 16S ribosomal RNA sequencing and measured 9 URT cytokines using magnetic bead-based assays. RESULTS: Of the 1949 infants enrolled, 1495 (76.71%) had 4-year data. In adjusted analyses, exclusive breast-feeding (1) had an inverse dose-response on the ⍺-diversity of the early-life URT and gut microbiome, (2) was positively associated with the URT levels of IFN-α, IFN-γ, and IL-17A in infancy, and (3) had a protective dose-response on the development of a lower respiratory tract infection in infancy, 4-year current asthma, and 4-year ever allergic rhinitis (odds ratio [95% CI] for each 4 weeks of exclusive breast-feeding, 0.95 [0.91-0.99], 0.95 [0.90-0.99], and 0.95 [0.92-0.99], respectively). In exploratory analyses, we also found that the protective association of exclusive breast-feeding on 4-year current asthma was mediated through its impact on the gut microbiome (P = .03). CONCLUSIONS: Our results support a protective causal role of exclusive breast-feeding in the risk of developing a lower respiratory tract infection in infancy and asthma and allergic rhinitis in childhood. They also shed light on potential mechanisms of these associations, including the effect of exclusive breast-feeding on the gut microbiome.


Asunto(s)
Asma , Microbiota , Infecciones del Sistema Respiratorio , Rinitis Alérgica , Asma/epidemiología , Asma/etiología , Lactancia Materna , Niño , Femenino , Humanos , Inmunidad , Lactante , Estudios Prospectivos , Sistema Respiratorio , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/epidemiología , Rinitis Alérgica/complicaciones
7.
J Infect Dis ; 226(7): 1237-1242, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35639597

RESUMEN

BACKGROUND: Although neutralizing antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) correlate with protection against coronavirus disease 2019 (COVID-19), little is known about the neutralizing and antibody-dependent cell-mediated cytotoxicity (ADCC) responses to COVID-19, multisystem inflammatory syndrome in children (MIS-C), and COVID-19 vaccination in children. METHODS: We enrolled children 0-21 years of age with a history of COVID-19 (n = 13), MIS-C (n = 13), or 2 doses of BNT162b2 vaccination (n = 14) into a phlebotomy protocol. We measured pseudovirus neutralizing and functional ADCC antibodies to SARS-CoV-2 variants, including Omicron (B.1.1.529). RESULTS: The primary BNT162b2 vaccination series elicited higher neutralizing and ADCC responses with greater breadth to SARS-CoV-2 variants than COVID-19 or MIS-C, although these were diminished against Omicron. CONCLUSIONS: Serologic responses were significantly reduced against variants, particularly Omicron.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/complicaciones , Vacunas contra la COVID-19 , Niño , Humanos , Pruebas de Neutralización , Síndrome de Respuesta Inflamatoria Sistémica , Vacunación
8.
J Infect Dis ; 227(1): 50-60, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36281651

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through deshielding of surface epitopes. METHODS: Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and real-time polymerase chain reaction (RT-PCR). Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 postchallenge. RESULTS: Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19F-G155S compared to RSV-challenged, unvaccinated mice. CONCLUSIONS: Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Ratones , Vacunas Atenuadas , Mucinas , Ratones Endogámicos BALB C , Virus Sincitial Respiratorio Humano/genética , Anticuerpos Neutralizantes , Proteínas de Unión al GTP , Anticuerpos Antivirales , Proteínas Virales de Fusión/genética
9.
J Virol ; 95(11)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33731455

RESUMEN

Respiratory syncytial virus (RSV) contains a conserved CX3C motif on the ectodomain of the G-protein. The motif has been indicated as facilitating attachment of the virus to the host initiating infection via the human CX3CR1 receptor. The natural CX3CR1 ligand, CX3CL1, has been shown to induce signaling pathways resulting in transcriptional changes in the host cells. We hypothesize that binding of RSV to CX3CR1 via CX3C leads to transcriptional changes in host epithelial cells. Using transcriptomic analysis, the effect of CX3CR1 engagement by RSV was investigated. Normal human bronchial epithelial (NHBE) cells were infected with RSV virus containing either wildtype G-protein, or a mutant virus containing a CX4C mutation in the G-protein. RNA sequencing was performed on mock and 4-days-post-infected cultures. NHBE cultures were also treated with purified recombinant wild-type A2 G-protein. Here we report that RSV infection resulted in significant changes in the levels 766 transcripts. Many nuclear associated proteins were upregulated in the WT group, including nucleolin. Alternatively, cilia-associated genes, including CC2D2A and CFAP221 (PCDP1), were downregulated. The addition of recombinant G-protein to the culture lead to the suppression of cilia-related genes while also inducing nucleolin. Mutation of the CX3C motif (CX4C) reversed these effects on transcription decreasing nucleolin induction and lessening the suppression of cilia-related transcripts in culture. Furthermore, immunohistochemical staining demonstrated decreases in in ciliated cells and altered morphology. Therefore, it appears that engagement of CX3CR1 leads to induction of genes necessary for RSV entry as well as dysregulation of genes associated with cilia function.ImportanceRespiratory Syncytial Virus (RSV) has an enormous impact on infants and the elderly including increased fatality rates and potential for causing lifelong lung problems. Humans become infected with RSV through the inhalation of viral particles exhaled from an infected individual. These virus particles contain specific proteins that the virus uses to attach to human ciliated lung epithelial cells, initiating infection. Two viral proteins, G-protein and F-protein, have been shown to bind to human CX3CR1and nucleolin, respectively. Here we show that the G-protein induces nucleolin and suppresses gene transcripts specific to ciliated cells. Furthermore, we show that mutation of the CX3C-motif on the G-protein, CX4C, reverses these transcriptional changes.

10.
Emerg Infect Dis ; 27(6): 1-9, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34013862

RESUMEN

Human respiratory syncytial virus (HRSV) is the leading viral cause of serious pediatric respiratory disease, and lifelong reinfections are common. Its 2 major subgroups, A and B, exhibit some antigenic variability, enabling HRSV to circulate annually. Globally, research has increased the number of HRSV genomic sequences available. To ensure accurate molecular epidemiology analyses, we propose a uniform nomenclature for HRSV-positive samples and isolates, and HRSV sequences, namely: HRSV/subgroup identifier/geographic identifier/unique sequence identifier/year of sampling. We also propose a template for submitting associated metadata. Universal nomenclature would help researchers retrieve and analyze sequence data to better understand the evolution of this virus.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Variación Genética , Genotipo , Humanos , Epidemiología Molecular , Filogenia , Virus Sincitial Respiratorio Humano/genética
11.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115881

RESUMEN

This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.


Asunto(s)
Evasión Inmune/genética , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/patogenicidad , Proteínas Virales de Fusión/genética , Animales , Línea Celular , Regulación Viral de la Expresión Génica , Genotipo , Humanos , Lactante , Ratones , Ratones Endogámicos BALB C , Mutación , Filogenia , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Índice de Severidad de la Enfermedad , Proteínas Virales de Fusión/inmunología , Carga Viral/genética , Virulencia/genética , Replicación Viral/genética
12.
J Virol ; 94(19)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32699094

RESUMEN

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients.IMPORTANCE The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Células Epiteliales/inmunología , Interferón Tipo I/inmunología , Interferones/inmunología , Neumonía Viral/inmunología , Animales , Betacoronavirus/fisiología , Bronquios/citología , Bronquios/inmunología , Bronquios/virología , COVID-19 , Línea Celular , Células Cultivadas , Quimiocinas/inmunología , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Citocinas/inmunología , Perros , Células Epiteliales/virología , Humanos , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Células de Riñón Canino Madin Darby , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Replicación Viral , Interferón lambda
13.
J Med Virol ; 93(6): 3439-3445, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33325064

RESUMEN

Respiratory syncytial virus (RSV) infection is a major cause of respiratory tract disease in young children and throughout life. Infant infection is also associated with later respiratory morbidity including asthma. With a prospective birth cohort study of RSV and asthma, we evaluated the performance of an RSV antibody enzyme-linked immunoassay (EIA) for detecting prior infant RSV infection. Infant RSV infection was determined by biweekly respiratory illness surveillance plus RSV polymerase chain reaction (PCR) testing in their first RSV season and serum RSV antibodies after the season at approximately 1 year of age. RSV antibodies were detected by RSV A and B lysate EIA. Antibody and PCR results on 1707 children included 327 RSV PCR positive (PCR+) and 1380 not RSV+. Of 327 PCR+ children, 314 (96%) were lysate EIA positive and 583 out of 1380 (42%) children not PCR+ were positive. We compared the lysate EIA to RSV F, group A G (Ga), and group B G (Gb) protein antibody EIAs in a subset of 226 sera, 118 PCR+ children (97 group A and 21 group B) and 108 not PCR+. In this subset, 117 out of 118 (99%) RSV PCR+ children were positive by both the F and lysate EIAs and 103 out of 118 (87%) were positive by the Ga and/or Gb EIAs. Comparison of the two G EIAs indicated the infecting group correctly in 100 out of 118 (86%) and incorrectly in 1 out of 118 (1%). The lysate and F EIAs are sensitive for detecting infant infection and the two G EIAs can indicate the group of an earlier primary infection.


Asunto(s)
Anticuerpos Antivirales/sangre , Técnicas para Inmunoenzimas/normas , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Virus Sincitial Respiratorio Humano/inmunología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Asma/diagnóstico , Asma/inmunología , Femenino , Humanos , Técnicas para Inmunoenzimas/métodos , Lactante , Masculino , Estudios Prospectivos , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Infecciones del Sistema Respiratorio/inmunología
15.
Brain Behav Immun ; 76: 275-279, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30550928

RESUMEN

BACKGROUND: Prenatal life stress exposure is linked to dysregulated immune function and chronic inflammatory disease in offspring, but we know little about its effects on infant immune response during viral infection. METHOD: To address this issue, we examined associations between prenatal life stress exposure and infant upper-airway inflammatory markers during acute respiratory infection (ARI) using data from a prospective, population-based birth-cohort study (N = 180). Infant inflammation was measured as a continuous latent factor within a structural equation modeling framework using nasal wash concentrations of interleukin-1ß, interleukin-6, and tumor necrosis factor-α. We hypothesized that infants exposed to prenatal life stress would have greater levels of nasal inflammation during ARI and increased risk for ARI-related morbidity in early childhood. RESULTS: Our findings contradicted these hypotheses and provided evidence of sexually dimorphic effects of prenatal stress exposure on infant immune functioning during ARI. Among boys, but not girls, prenatal stress was negatively associated with nasal inflammation and indirectly associated with both lower ARI severity and reduced likelihood of subsequent ARI-related hospitalization in the 2nd and 3rd years of life. CONCLUSION: These data suggest that prenatal stress exposure may be beneficial for infant boys in the context of respiratory viral infections; however, it will be critical to determine if these benefits are offset by increased risk for chronic inflammatory diseases in later childhood. As the participants in this cohort are being followed longitudinally through age 8, we will be able to evaluate long-term health outcomes in future studies.


Asunto(s)
Inflamación/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Infecciones del Sistema Respiratorio/inmunología , Preescolar , Estudios de Cohortes , Citocinas/análisis , Citocinas/sangre , Femenino , Humanos , Lactante , Recién Nacido , Inflamación/metabolismo , Interleucina-1beta , Interleucina-6 , Estudios Longitudinales , Masculino , Embarazo , Estudios Prospectivos , Infecciones del Sistema Respiratorio/fisiopatología , Factores de Riesgo , Factores Sexuales , Estrés Psicológico/metabolismo , Factor de Necrosis Tumoral alfa , Virosis
16.
Am J Respir Crit Care Med ; 198(8): 1064-1073, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29733679

RESUMEN

RATIONALE: Recurrent wheeze and asthma are thought to result from alterations in early life immune development following respiratory syncytial virus (RSV) infection. However, prior studies of the nasal immune response to infection have assessed only individual cytokines, which does not capture the whole spectrum of response to infection. OBJECTIVES: To identify nasal immune phenotypes in response to RSV infection and their association with recurrent wheeze. METHODS: A birth cohort of term healthy infants born June to December were recruited and followed to capture the first infant RSV infection. Nasal wash samples were collected during acute respiratory infection, viruses were identified by RT-PCR, and immune-response analytes were assayed using a multianalyte bead-based panel. Immune-response clusters were identified using machine learning, and association with recurrent wheeze at age 1 and 2 years was assessed using logistic regression. MEASUREMENTS AND MAIN RESULTS: We identified two novel and distinct immune-response clusters to RSV and human rhinovirus. In RSV-infected infants, a nasal immune-response cluster characterized by lower non-IFN antiviral immune-response mediators, and higher type-2 and type-17 cytokines was significantly associated with first and second year recurrent wheeze. In comparison, we did not observe this in infants with human rhinovirus acute respiratory infection. Based on network analysis, type-2 and type-17 cytokines were central to the immune response to RSV, whereas growth factors and chemokines were central to the immune response to human rhinovirus. CONCLUSIONS: Distinct immune-response clusters during infant RSV infection and their association with risk of recurrent wheeze provide insights into the risk factors for and mechanisms of asthma development.


Asunto(s)
Mucosa Nasal/inmunología , Ruidos Respiratorios/etiología , Infecciones por Virus Sincitial Respiratorio/inmunología , Asma/etiología , Asma/virología , Preescolar , Femenino , Humanos , Inmunidad , Lactante , Recién Nacido , Modelos Logísticos , Masculino , Mucosa Nasal/virología , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Recurrencia , Ruidos Respiratorios/inmunología , Virus Sincitial Respiratorio Humano/inmunología
17.
J Allergy Clin Immunol ; 142(5): 1447-1456.e9, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29330010

RESUMEN

BACKGROUND: Early life acute respiratory infection (ARI) with respiratory syncytial virus (RSV) has been strongly associated with the development of childhood wheezing illnesses, but the pathways underlying this association are poorly understood. OBJECTIVE: To examine the role of the nasopharyngeal microbiome in the development of childhood wheezing illnesses following RSV ARI in infancy. METHODS: We conducted a nested cohort study of 118 previously healthy, term infants with confirmed RSV ARI by RT-PCR. We used next-generation sequencing of the V4 region of the 16S ribosomal RNA gene to characterize the nasopharyngeal microbiome during RSV ARI. Our main outcome of interest was 2-year subsequent wheeze. RESULTS: Of the 118 infants, 113 (95.8%) had 2-year outcome data. Of these, 46 (40.7%) had parental report of subsequent wheeze. There was no association between the overall taxonomic composition, diversity, and richness of the nasopharyngeal microbiome during RSV ARI with the development of subsequent wheeze. However, the nasopharyngeal detection and abundance of Lactobacillus was consistently higher in infants who did not develop this outcome. Lactobacillus also ranked first among the different genera in a model distinguishing infants with and without subsequent wheeze. CONCLUSIONS: The nasopharyngeal detection and increased abundance of Lactobacillus during RSV ARI in infancy are associated with a reduced risk of childhood wheezing illnesses at age 2 years.


Asunto(s)
Lactobacillus/aislamiento & purificación , Nasofaringe/microbiología , Ruidos Respiratorios , Infecciones por Virus Sincitial Respiratorio/microbiología , Enfermedad Aguda , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Microbiota , ARN Ribosómico 16S/genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/inmunología , Riesgo
18.
Clin Infect Dis ; 67(9): 1441-1444, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29878077

RESUMEN

To assess MUC5AC as a biomarker for respiratory syncytial virus (RSV) disease severity, we tested nasal aspirates from RSV+ children with mild, moderate, and severe disease. Levels were significantly higher in those in the severe and moderate groups compared to mild group, indicating MUC5AC may be a useful biomarker for RSV disease severity.


Asunto(s)
Mucina 5AC/análisis , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Índice de Severidad de la Enfermedad , Argentina , Biomarcadores/análisis , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Nariz/virología , Curva ROC , Infecciones por Virus Sincitial Respiratorio/complicaciones , Virus Sincitial Respiratorio Humano/genética
19.
Emerg Infect Dis ; 24(7): 1178-1187, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29916350

RESUMEN

The need for closer linkages between scientific and programmatic areas focused on addressing vaccine-preventable and acute respiratory infections led to establishment of the National Center for Immunization and Respiratory Diseases (NCIRD) at the Centers for Disease Control and Prevention. During its first 10 years (2006-2015), NCIRD worked with partners to improve preparedness and response to pandemic influenza and other emergent respiratory infections, provide an evidence base for addition of 7 newly recommended vaccines, and modernize vaccine distribution. Clinical tools were developed for improved conversations with parents, which helped sustain childhood immunization as a social norm. Coverage increased for vaccines to protect adolescents against pertussis, meningococcal meningitis, and human papillomavirus-associated cancers. NCIRD programs supported outbreak response for new respiratory pathogens and oversaw response of the Centers for Disease Control and Prevention to the 2009 influenza A(H1N1) pandemic. Other national public health institutes might also find closer linkages between epidemiology, laboratory, and immunization programs useful.


Asunto(s)
Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/prevención & control , Vacunación , Vacunas , Centers for Disease Control and Prevention, U.S. , Salud Global , Historia del Siglo XXI , Humanos , Programas de Inmunización , Evaluación de Resultado en la Atención de Salud , Enfermedades Respiratorias/historia , Estados Unidos/epidemiología , Vacunación/métodos , Vacunas/inmunología
20.
Metabolomics ; 14(10): 135, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30830453

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) infection in infants causes significant morbidity and is the strongest risk factor associated with asthma. Metabolites, which reflect the interactions between host cell and virus, provide an opportunity to identify the pathways that underlie severe infections and asthma development. OBJECTIVE: To study metabolic profile differences between infants with RSV infection, and human rhinovirus (HRV) infection, and healthy infants. To compare infant metabolic differences between children who do and do not wheeze. METHODS: In a term birth cohort, urine was collected while healthy and during acute viral respiratory infection with RSV and HRV. We used 1H-NMR to identify urinary metabolites. Multivariate and univariate statistics were used to discriminate metabolic profiles of infants with either RSV ARI, or HRV ARI, and healthy infants. Multivariable logistic regression was used to assess the association of urine metabolites with 1st-, 2nd-, and 3rd-year recurrent wheezing. RESULTS: Several metabolites in nicotinate and nicotinamide metabolism pathways were down-regulated in infants with RSV infection compared to healthy controls. There were no significant differences in metabolite profiles between infants with RSV infection and infants with HRV Infection. Alanine was strongly associated with reduced risk of 1st-year wheezing (OR 0.18[0.0, 0.46]) and 2nd-year wheezing (OR 0.31[0.13, 0.73]), while 2-hydroxyisobutyric acid was associated with increased 3rd-year wheezing (OR 5.02[1.49, 16.93]) only among the RSV infected subset. CONCLUSION: The metabolites associated with infant RSV infection and recurrent-wheezing are indicative of viral takeover of the cellular machinery and resources to enhance virulence, replication, and subversion of the host immune-response, highlighting metabolic pathways important in the pathogenesis of RSV infection and wheeze development.


Asunto(s)
Metabolómica , Ruidos Respiratorios , Infecciones por Virus Sincitial Respiratorio/orina , Infecciones por Virus Sincitial Respiratorio/virología , Rhinovirus/patogenicidad , Estudios de Cohortes , Femenino , Humanos , Masculino , Análisis Multivariante , Infecciones por Virus Sincitial Respiratorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA