Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923223

RESUMEN

Herpes Simplex Virus Type-1 (HSV-1) forms progeny in the nucleus within distinct membrane-less inclusions, the viral replication compartments (VRCs), where viral gene expression, DNA replication, and packaging occur. The way in which the VRCs maintain spatial integrity remains unresolved. Here, we demonstrate that the essential viral transcription factor ICP4 is an intrinsically disordered protein (IDP) capable of driving protein condensation and liquid-liquid phase separation (LLPS) in transfected cells. Particularly, ICP4 forms nuclear liquid-like condensates in a dose- and time-dependent manner. Fluorescence recovery after photobleaching (FRAP) assays revealed rapid exchange rates of EYFP-ICP4 between phase-separated condensates and the surroundings, akin to other viral IDPs that drive LLPS. Likewise, HSV-1 VRCs revealed by EYFP-tagged ICP4 retained their liquid-like nature, suggesting that they are phase-separated condensates. Individual VRCs homotypically fused when reaching close proximity and grew over the course of infection. Together, the results of this study demonstrate that the HSV-1 transcription factor ICP4 has characteristics of a viral IDP, forms condensates in the cell nucleus by LLPS, and can be used as a proxy for HSV-1 VRCs with characteristics of liquid-liquid phase-separated condensates.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Compartimentos de Replicación Viral , Animales , Núcleo Celular/metabolismo , Chlorocebus aethiops , Herpes Simple/genética , Herpes Simple/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Intrínsecamente Desordenadas/genética , Extracción Líquido-Líquido , Transición de Fase , Células Vero
2.
Nat Commun ; 13(1): 7787, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526633

RESUMEN

Cells contain numerous substructures that have been proposed to form via liquid-liquid phase separation (LLPS). It is currently debated how to reliably distinguish LLPS from other mechanisms. Here, we benchmark different methods using well-controlled model systems in vitro and in living cells. We find that 1,6-hexanediol treatment and classical FRAP fail to distinguish LLPS from the alternative scenario of molecules binding to spatially clustered binding sites without phase-separating. In contrast, the preferential internal mixing seen in half-bleach experiments robustly distinguishes both mechanisms. We introduce a workflow termed model-free calibrated half-FRAP (MOCHA-FRAP) to probe the barrier at the condensate interface that is responsible for preferential internal mixing. We use it to study components of heterochromatin foci, nucleoli, stress granules and nuage granules, and show that the strength of the interfacial barrier increases in this order. We anticipate that MOCHA-FRAP will help uncover the mechanistic basis of biomolecular condensates in living cells.


Asunto(s)
Nucléolo Celular , Heterocromatina , Nucléolo Celular/metabolismo , Sitios de Unión , Heterocromatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA