Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hered ; 114(5): 488-491, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37145017

RESUMEN

Valued for their temperament, beauty, athletic ability, and exhibition in the show ring, Arabian horses are an important component of the horse industry. Juvenile idiopathic epilepsy (JIE), a seizure disorder, is most often reported in Arabian foals from birth to 6 months of age. Affected foals exhibit tonic-clonic seizures lasting as long as 5 min and risking secondary complications like temporary blindness and disorientation. Some foals outgrow this condition, while others die or suffer lifelong complications if not treated. Previous work suggested a strong genetic component to JIE and proposed JIE to be a single-gene trait. In this work, we conducted a genome wide association study (GWAS) in 60 cases of JIE and 120 genetically matched controls, identifying loci suggesting JIE is not caused by a single locus. Coat color (chestnut, gray) phenotypes were used as positive control traits to assess the efficacy of GWAS in this population. Future work will attempt to future define candidate regions and explore a polygenic mode of inheritance.


Asunto(s)
Epilepsia , Enfermedades de los Caballos , Animales , Caballos/genética , Estudio de Asociación del Genoma Completo , Epilepsia/genética , Epilepsia/veterinaria , Enfermedades de los Caballos/genética
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298490

RESUMEN

The equine chorionic girdle is comprised of specialized invasive trophoblast cells that begin formation approximately 25 days after ovulation (day 0) and invade the endometrium to become endometrial cups. These specialized trophoblast cells transition from uninucleate to differentiated binucleate trophoblast cells that secrete the glycoprotein hormone equine chorionic gonadotropin (eCG; formerly known as pregnant mare serum gonadotropin or PMSG). This eCG has LH-like activity in the horse but variable LH- and FSH-like activity in other species and has been utilized for these properties both in vivo and in vitro. To produce eCG commercially, large volumes of whole blood must be collected from pregnant mares, which negatively impacts equine welfare due to repeated blood collections and the birth of an unwanted foal. Attempts to produce eCG in vitro using long-term culture of chorionic girdle explants have not been successful beyond 180 days, with peak eCG production at 30 days of culture. Organoids are three-dimensional cell clusters that self-organize and can remain genetically and phenotypically stable throughout long-term culture (i.e., months). Human trophoblast organoids have been reported to successfully produce human chorionic gonadotropin (hCG) and proliferate long-term (>1 year). The objective of this study was to evaluate whether organoids derived from equine chorionic girdle maintain physiological functionality. Here we show generation of chorionic girdle organoids for the first time and demonstrate in vitro production of eCG for up to 6 weeks in culture. Therefore, equine chorionic girdle organoids provide a physiologically representative 3D in vitro model for chorionic girdle development of early equine pregnancy.


Asunto(s)
Gonadotropinas Equinas , Trofoblastos , Embarazo , Humanos , Caballos , Animales , Femenino , Gonadotropinas Equinas/farmacología , Diferenciación Celular , Gonadotropina Coriónica/farmacología , Organoides
3.
Genome Res ; 28(6): 789-799, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29712753

RESUMEN

Mammalian centromeres are associated with highly repetitive DNA (satellite DNA), which has so far hindered molecular analysis of this chromatin domain. Centromeres are epigenetically specified, and binding of the CENPA protein is their main determinant. In previous work, we described the first example of a natural satellite-free centromere on Equus caballus Chromosome 11. Here, we investigated the satellite-free centromeres of Equus asinus by using ChIP-seq with anti-CENPA antibodies. We identified an extraordinarily high number of centromeres lacking satellite DNA (16 of 31). All of them lay in LINE- and AT-rich regions. A subset of these centromeres is associated with DNA amplification. The location of CENPA binding domains can vary in different individuals, giving rise to epialleles. The analysis of epiallele transmission in hybrids (three mules and one hinny) showed that centromeric domains are inherited as Mendelian traits, but their position can slide in one generation. Conversely, centromere location is stable during mitotic propagation of cultured cells. Our results demonstrate that the presence of more than half of centromeres void of satellite DNA is compatible with genome stability and species survival. The presence of amplified DNA at some centromeres suggests that these arrays may represent an intermediate stage toward satellite DNA formation during evolution. The fact that CENPA binding domains can move within relatively restricted regions (a few hundred kilobases) suggests that the centromeric function is physically limited by epigenetic boundaries.


Asunto(s)
Proteína A Centromérica/genética , Centrómero/genética , ADN Satélite/genética , Evolución Molecular , Animales , Autoantígenos/genética , Cromatina/genética , Inestabilidad Genómica/genética , Caballos , Mamíferos
4.
Adv Anat Embryol Cell Biol ; 234: 91-128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34694479

RESUMEN

This chapter focuses on the early stages of placental development in horses and their relatives in the genus Equus and highlights unique features of equid reproductive biology. The equine placenta is classified as a noninvasive, epitheliochorial type. However, equids have evolved a minor component of invasive trophoblast, the chorionic girdle and endometrial cups, which links the equine placenta with the highly invasive hemochorial placentae of rodents and, particularly, with the primate placenta. Two types of fetus-to-mother signaling in equine pregnancy are mediated by the invasive equine trophoblast cells. First, endocrinological signaling mediated by equine chorionic gonadotrophin (eCG) drives maternal progesterone production to support the equine conceptus between days 40 and 100 of gestation. Only in primates and equids does the placenta produce a gonadotrophin, but the evolutionary paths taken by these two groups of mammals to produce this placental signal were very different. Second, florid expression of paternal major histocompatibility complex (MHC) class I molecules by invading chorionic girdle cells stimulates strong maternal anti-fetal antibody responses that may play a role in the development of immunological tolerance that protects the conceptus from destruction by the maternal immune system. In humans, invasive extravillous trophoblasts also express MHC class I molecules, but the loci involved, and their likely function, are different from those of the horse. Comparison of the cellular and molecular events in these disparate species provides outstanding examples of convergent evolution and co-option in mammalian pregnancy and highlights how studies of the equine placenta have produced new insights into reproductive strategies.


Asunto(s)
Placenta , Placentación , Animales , Corion , Endometrio , Femenino , Caballos , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
6.
Vet Clin North Am Equine Pract ; 36(2): 273-288, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32654783

RESUMEN

Host defenses against infection by viruses, bacteria, fungi, and parasites are critical to survival. It has been estimated that upwards of 7% of the coding genes of mammals function in immunity and inflammation. This high level of genomic investment in defense has resulted in an immune system characterized by extraordinary complexity and many levels of redundancy. Because so many genes are involved with immunity, there are many opportunities for mutations to arise that have negative effects. However, redundancy in the mammalian defense system and the adaptive nature of key immune mechanisms buffer the untoward outcomes of many such deleterious mutations.


Asunto(s)
Enfermedades de los Caballos/genética , Enfermedades de los Caballos/inmunología , Enfermedades del Sistema Inmune/veterinaria , Animales , Caballos , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/veterinaria
7.
Genes Immun ; 20(8): 660-670, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31068686

RESUMEN

The Icelandic horse has been maintained as a closed population in its eponymous homeland for many generations, with no recorded introductions of new horses of any breed since the year 1000 CE. Here we determined the diversity of major histocompatibility complex (MHC) haplotypes in 156 Icelandic horses from two groups, based on a panel of 12 polymorphic intra-MHC microsatellites tested in families of various composition. We identified a total of 79 MHC haplotypes in these two groups, including one documented intra-MHC recombination event from a total of 147 observed meioses. None of these MHC haplotypes have been previously described in any other horse breed. Only one MHC homozygote was found in the entire population studied. These results indicate a very high level of MHC heterozygosity and haplotype diversity in the Icelandic horse. The environment in Iceland is remarkable for its lack of common agents of equine infectious disease, including equine herpesvirus type 1, influenza virus, and streptococcus equi. The driving forces for maintenance of MHC heterozygosity in Icelandic horses must thus be sought outside of these major horse pathogens. Based on our results, we propose that intra-MHC recombination may play a major role in the generation of novel haplotypes.


Asunto(s)
Caballos/genética , Caballos/inmunología , Complejo Mayor de Histocompatibilidad , Animales , Femenino , Haplotipos , Caballos/clasificación , Islandia , Masculino , Repeticiones de Microsatélite , Linaje , Recombinación Genética
8.
PLoS Pathog ; 13(10): e1006694, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29084265

RESUMEN

Hepatitis C virus (HCV) requires the liver specific micro-RNA (miRNA), miR-122, to replicate. This was considered unique among RNA viruses until recent discoveries of HCV-related hepaciviruses prompting the question of a more general miR-122 dependence. Among hepaciviruses, the closest known HCV relative is the equine non-primate hepacivirus (NPHV). Here, we used Argonaute cross-linking immunoprecipitation (AGO-CLIP) to confirm AGO binding to the single predicted miR-122 site in the NPHV 5'UTR in vivo. To study miR-122 requirements in the absence of NPHV-permissive cell culture systems, we generated infectious NPHV/HCV chimeric viruses with the 5' end of NPHV replacing orthologous HCV sequences. These chimeras were viable even in cells lacking miR-122, although miR-122 presence enhanced virus production. No other miRNAs bound this region. By random mutagenesis, we isolated HCV variants partially dependent on miR-122 as well as robustly replicating NPHV/HCV variants completely independent of any miRNAs. These miRNA independent variants even replicate and produce infectious particles in non-hepatic cells after exogenous delivery of apolipoprotein E (ApoE). Our findings suggest that miR-122 independent HCV and NPHV variants have arisen and been sampled during evolution, yet miR-122 dependence has prevailed. We propose that hepaciviruses may use this mechanism to guarantee liver tropism and exploit the tolerogenic liver environment to avoid clearance and promote chronicity.


Asunto(s)
Evolución Molecular , Hepacivirus/metabolismo , Hepatitis C/metabolismo , MicroARNs/metabolismo , Tropismo Viral/fisiología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Hepacivirus/genética , Hepatitis C/genética , Humanos , MicroARNs/genética , Mutagénesis
9.
Nature ; 499(7456): 74-8, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23803765

RESUMEN

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.


Asunto(s)
Evolución Molecular , Genoma/genética , Caballos/genética , Filogenia , Animales , Conservación de los Recursos Naturales , ADN/análisis , ADN/genética , Especies en Peligro de Extinción , Equidae/clasificación , Equidae/genética , Fósiles , Variación Genética/genética , Historia Antigua , Caballos/clasificación , Proteínas/análisis , Proteínas/química , Proteínas/genética , El Yukón
10.
Immunogenetics ; 70(5): 305-315, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29170799

RESUMEN

Previous research on the equine major histocompatibility complex (MHC) demonstrated strong correlations between haplotypes defined by polymorphic intra-MHC microsatellites and haplotypes defined using classical serology. Here, we estimated MHC diversity in a sample of 124 Arabian horses from an endangered strain native to Iran (Persian Asil Arabians), using a validated 10-marker microsatellite panel. In a group of 66 horses related as parent-offspring pairs or half-sibling groups, we defined 51 MHC haplotypes, 49 of which were new. In 47 of the remaining 58 unrelated horses, we could assign one previously identified MHC haplotype, and by default, we gave provisional haplotype status to the remaining constellation of microsatellite alleles. In these horses, we found 21 haplotypes that we had previously defined and 31 provisional haplotypes, two of which had been identified in an earlier study. This gave a total of 78 new MHC haplotypes. The final 11 horses were MHC heterozygotes that we could not phase using information from any of the previously validated or provisional haplotypes. However, we could determine that these horses carried a total of 22 different undefined haplotypes. In the overall population sample, we detected three homozygous horses and one maternally inherited recombinant from 21 informative segregations. Virtually all of the horses tested were MHC heterozygotes, and most unrelated horses (98%) were heterozygous for rare microsatellite-defined haplotypes found less than three times in the sampled horses. This is evidence for a very high level of MHC haplotype variation in the Persian Asil Arabian horse.


Asunto(s)
Haplotipos , Caballos/genética , Caballos/inmunología , Complejo Mayor de Histocompatibilidad , Repeticiones de Microsatélite , Polimorfismo Genético , Animales , Femenino , Masculino , Persia , Análisis de Secuencia de ADN
11.
Immunogenetics ; 69(3): 145-156, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27889800

RESUMEN

The polymorphism of major histocompatibility complex (MHC) class II DQ and DR genes in five common equine leukocyte antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine bacterial artificial chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next generation sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse.


Asunto(s)
Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Haplotipos/genética , Caballos/genética , Complejo Mayor de Histocompatibilidad/genética , Polimorfismo Genético/genética , Alelos , Secuencia de Aminoácidos , Animales , Cromosomas Artificiales Bacterianos , Femenino , Conversión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Masculino , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Homología de Secuencia de Aminoácido
12.
Immunogenetics ; 69(5): 351-358, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28315936

RESUMEN

Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.


Asunto(s)
Epítopos de Linfocito T/inmunología , Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencias de Aminoácidos , Animales , Haplotipos , Antígenos de Histocompatibilidad Clase I/inmunología , Caballos , Fragmentos de Péptidos/inmunología , Unión Proteica , Dominios Proteicos
13.
Proc Natl Acad Sci U S A ; 111(52): 18655-60, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25453089

RESUMEN

Horses, asses, and zebras belong to a single genus, Equus, which emerged 4.0-4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1-3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.


Asunto(s)
Cromosomas de los Mamíferos/genética , Equidae/genética , Evolución Molecular , Extinción Biológica , Flujo Génico , África , Animales , América del Norte
14.
Int J Cancer ; 139(4): 784-92, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27037728

RESUMEN

The common equine skin tumors known as sarcoids have been causally associated with infection by bovine papillomavirus (BPV). Additionally, there is evidence for host genetic susceptibility to sarcoids. We investigated the genetic basis of susceptibility to sarcoid tumors on a cohort of 82 affected horses and 270 controls genotyped on a genome-wide platform and two custom panels. A Genome Wide Association Study (GWAS) identified candidate regions on six chromosomes. Bayesian probability analysis of the same dataset verified only the regions on equine chromosomes (ECA) 20 and 22. Fine mapping using custom-produced SNP arrays for ECA20 and ECA22 regions identified two marker loci with high levels of significance: SNP BIEC2-530826 (map position 32,787,619) on ECA20 in an intron of the DQA1 gene in the Major Histocompatibility Complex (MHC) class II region (p = 4.6e-06), and SNP BIEC2-589604 (map position 25,951,536) on ECA22 in a 200 kb region containing four candidate genes: PROCR, EDEM2, EIF6 and MMP24 (p = 2.14e-06). The marker loci yielded odds ratios of 5.05 and 4.02 for ECA20 and ECA22, respectively. Associations between genetic MHC class II variants and papillomavirus-induced tumors have been reported for human papillomavirus and cottontail rabbit papillomavirus infections. This suggests a common mechanism for susceptibility to tumor progression that may involve subversion of the host immune response. This study also identified a genomic region other than MHC that influenced papillomavirus-induced tumor development in the studied population.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/etiología , Neoplasias/veterinaria , Infecciones por Papillomavirus/complicaciones , Alelos , Animales , Estudios de Casos y Controles , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Caballos , Desequilibrio de Ligamiento , Oportunidad Relativa , Infecciones por Papillomavirus/virología , Polimorfismo de Nucleótido Simple , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/etiología
15.
Biol Reprod ; 95(6): 135, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27760752

RESUMEN

Invasive trophoblast from Day 34 horse conceptuses survives in extrauterine sites in allogeneic recipients that are immunologically naive to donor major histocompatibility complex class I antigens. The ectopic trophoblast retains its in utero characteristics, including similar lifespan, physiologic effect of its secreted product (equine chorionic gonadotropin) upon the recipient's ovaries, and induction of host immune responses. Immunologic memory has not been considered previously in this experimental system. We hypothesized that primary exposure to ectopic trophoblast would affect the recipient's immune status such that the survival time of subsequent transplants would be altered. Secondary transplant lifespans could be shortened by destructive memory responses, as has been observed in ectopic trophoblast studies in rodents, or lengthened, as occurs when male skin grafts follow multiple syngeneic pregnancies in mice. Eight mares received two closely spaced trophoblast transplants. Both grafts for each recipient were obtained from conceptuses sired by the same stallion to provide consistency in histocompatibility antigen exposure. Donor stallions were major histocompatibility complex class I homozygotes. Cytotoxic antibody production was tracked to monitor recipients' immune responses to the transplants. Detection of serum equine chorionic gonadotropin was used as a proxy for transplant lifespan. There was no significant difference between the distributions of primary and secondary transplant lifespans, despite evidence of immunologic memory. These data demonstrate that secondary ectopic trophoblast transplants in horses do not experience earlier destruction or prolonged survival following immune priming of recipients. Mechanisms responsible for the eventual demise of the transplants remain unperturbed by secondary immune responses or chronic antigenic exposure.


Asunto(s)
Supervivencia de Injerto/inmunología , Inmunidad Activa/inmunología , Trofoblastos/trasplante , Aloinjertos , Animales , Femenino , Caballos , Trofoblastos/inmunología
16.
Proc Natl Acad Sci U S A ; 110(26): 10705-10, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754418

RESUMEN

The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.


Asunto(s)
Equidae/embriología , Equidae/genética , Impresión Genómica , Caballos/embriología , Caballos/genética , Placenta/metabolismo , Animales , Secuencia de Bases , Epigénesis Genética , Equidae/metabolismo , Femenino , Perfilación de la Expresión Génica , Caballos/metabolismo , Hibridación Genética , Masculino , Placenta/embriología , Polimorfismo de Nucleótido Simple , Embarazo
17.
Immunogenetics ; 67(11-12): 675-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26399241

RESUMEN

Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.


Asunto(s)
Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Herpesvirus Équido 1/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Linfocitos T Citotóxicos/inmunología , Alelos , Animales , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Enfermedades de los Caballos/genética , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Humanos , Leucocitos Mononucleares , Ratones , Unión Proteica , Proteoma/inmunología , Linfocitos T Citotóxicos/metabolismo , Espectrometría de Masas en Tándem
18.
Genome Res ; 22(10): 1855-63, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22645258

RESUMEN

In eutherian mammals, dosage compensation of X-linked genes is achieved by X chromosome inactivation. X inactivation is random in embryonic and adult tissues, but imprinted X inactivation (paternal X silencing) has been identified in the extra-embryonic membranes of the mouse, rat, and cow. Few other species have been studied for this trait, and the data from studies of the human placenta have been discordant or inconclusive. Here, we quantify X inactivation using RNA sequencing of placental tissue from reciprocal hybrids of horse and donkey (mule and hinny). In placental tissue from the equid hybrids and the horse parent, the allelic expression pattern was consistent with random X inactivation, and imprinted X inactivation can clearly be excluded. We characterized horse and donkey XIST gene and demonstrated that XIST allelic expression in female hybrid placental and fetal tissues is negatively correlated with the other X-linked genes chromosome-wide, which is consistent with the XIST-mediated mechanism of X inactivation discovered previously in mice. As the most structurally and morphologically diverse organ in mammals, the placenta also appears to show diverse mechanisms for dosage compensation that may result in differences in conceptus development across species.


Asunto(s)
Placenta/metabolismo , Inactivación del Cromosoma X , Alelos , Animales , Equidae , Femenino , Perfilación de la Expresión Génica , Genes Ligados a X , Impresión Genómica , Caballos , Masculino , Embarazo , Transcriptoma
19.
J Gen Virol ; 95(Pt 8): 1783-1789, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24836672

RESUMEN

Cytotoxic T-lymphocytes (CTLs) are associated with protective immunity against disease caused by equid herpesvirus type 1 (EHV-1). However, the EHV-1 target proteins for CTLs are poorly defined. This limits the development of vaccine candidates designed to stimulate strong CTL immunity. Here, classical CTL assays using lymphocytes from horses of three defined MHC class I types that experienced natural infection with EHV-1 and a modified vaccinia virus construct containing an EHV-1 gene encoding the immediate-early (IE) protein are reported. Horses homozygous for the equine leukocyte antigen (ELA)-A2 haplotype, but not the ELA-A5 haplotype, produced MHC-restricted CTL responses against the IE protein. Previously, horses homozygous for the ELA-A3 haplotype also mounted CTL responses against the IE protein. Both haplotypes are common in major horse breeds, including the Thoroughbred. Thus, the IE protein is an attractive candidate molecule for future studies of T-cell immunity to EHV-1 in the horse.


Asunto(s)
Herpesvirus Équido 1/inmunología , Proteínas Inmediatas-Precoces/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Pruebas Inmunológicas de Citotoxicidad , Caballos
20.
J Gen Virol ; 95(Pt 7): 1554-1563, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24722677

RESUMEN

Equid herpesvirus type 1 (EHV-1) was shown to use an unusual receptor for cellular entry - MHC-I molecules. Here, we demonstrated that the closely related EHV, EHV-4, also uses this strategy for cellular invasion, both in equine cells in culture and in the heterologous, non-permissive murine mastocytoma cell line (P815) after stable transfection with horse MHC-I genes. Using a panel of P815 cell lines transfected with individual horse MHC-I genes, we provided support for the hypothesis that EHV-1 and EHV-4 target classical polymorphic MHC-I molecules as viral entry receptors. All known equine MHC-I molecules from the two principal classical polymorphic loci specify alanine at position 173 (A173), whilst other MHC-I loci encoded different amino acids at this position and did not permit viral entry. Site-directed mutagenesis of position 173 diminished or enhanced viral entry, depending upon the initial amino acid. However, there were other, as yet undefined, constraints to this process: MHC-I genes from two non-classical loci carried A173 but did not enable viral entry in P815 transfectants. Our study suggested that the capacity to bind MHC-I molecules arose in the common ancestor of EHV-1 and EHV-4. The widespread occurrence of A173 in classical polymorphic horse MHC-I molecules indicated that horses of most MHC haplotypes should be susceptible to infection via this entry portal.


Asunto(s)
Herpesvirus Équido 4/fisiología , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Animales , Línea Celular , Análisis Mutacional de ADN , Herpesvirus Équido 1/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Caballos , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Acoplamiento Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA