Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175936

RESUMEN

The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Sepsis , Animales , Ratones , Vesículas Extracelulares/metabolismo , Pulmón , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Proteoma/metabolismo , Sepsis/metabolismo
2.
Crit Care Med ; 49(1): 140-150, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060501

RESUMEN

OBJECTIVES: We hypothesized that a time-controlled adaptive ventilation strategy would open and stabilize alveoli by controlling inspiratory and expiratory duration. Time-controlled adaptive ventilation was compared with volume-controlled ventilation at the same levels of mean airway pressure and positive end-release pressure (time-controlled adaptive ventilation)/positive end-expiratory pressure (volume-controlled ventilation) in a Pseudomonas aeruginosa-induced pneumonia model. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Twenty-one Wistar rats. INTERVENTIONS: Twenty-four hours after pneumonia induction, Wistar rats (n = 7) were ventilated with time-controlled adaptive ventilation (tidal volume = 8 mL/kg, airway pressure release ventilation for a Thigh = 0.75-0.85 s, release pressure (Plow) set at 0 cm H2O, and generating a positive end-release pressure = 1.6 cm H2O applied for Tlow = 0.11-0.14 s). The expiratory flow was terminated at 75% of the expiratory flow peak. An additional 14 animals were ventilated using volume-controlled ventilation, maintaining similar time-controlled adaptive ventilation levels of positive end-release pressure (positive end-expiratory pressure=1.6 cm H2O) and mean airway pressure = 10 cm H2O. Additional nonventilated animals (n = 7) were used for analysis of molecular biology markers. MEASUREMENTS AND MAIN RESULTS: After 1 hour of mechanical ventilation, the heterogeneity score, the expression of pro-inflammatory biomarkers interleukin-6 and cytokine-induced neutrophil chemoattractant-1 in lung tissue were significantly lower in the time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure groups (p = 0.008, p = 0.011, and p = 0.011, respectively). Epithelial cell integrity, measured by E-cadherin tissue expression, was higher in time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure (p = 0.004). Time-controlled adaptive ventilation animals had bacteremia counts lower than volume-controlled ventilation with similar mean airway pressure animals, while time-controlled adaptive ventilation and volume-controlled ventilation with similar positive end-release pressure animals had similar colony-forming unit counts. In addition, lung edema and cytokine-induced neutrophil chemoattractant-1 gene expression were more reduced in time-controlled adaptive ventilation than volume-controlled ventilation with similar positive end-release pressure groups. CONCLUSIONS: In the model of pneumonia used herein, at the same tidal volume and mean airway pressure, time-controlled adaptive ventilation, compared with volume-controlled ventilation, was associated with less lung damage and bacteremia and reduced gene expression of mediators associated with inflammation.


Asunto(s)
Neumonía Bacteriana/terapia , Respiración Artificial/métodos , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Resultado del Tratamiento
3.
Respir Res ; 22(1): 214, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330283

RESUMEN

BACKGROUND: We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). METHODS: Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer's lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH2O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH2O/min for 30 min) PEEP decrease from 9 to 3 cmH2O. Animals were then further ventilated for 10 min at PEEP = 3 cmH2O, euthanized, and their lungs and kidneys removed for molecular biology analysis. RESULTS: At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. CONCLUSION: In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.


Asunto(s)
Corazón/fisiopatología , Riñón/fisiopatología , Pulmón/fisiopatología , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/fisiopatología , Equilibrio Hidroelectrolítico/fisiología , Animales , Corazón/efectos de los fármacos , Infusiones Intravenosas , Riñón/efectos de los fármacos , Pulmón/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/terapia , Lactato de Ringer/administración & dosificación , Lactato de Ringer/toxicidad , Equilibrio Hidroelectrolítico/efectos de los fármacos
4.
Anesthesiology ; 132(2): 307-320, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31939846

RESUMEN

BACKGROUND: Pressure-support ventilation may worsen lung damage due to increased dynamic transpulmonary driving pressure. The authors hypothesized that, at the same tidal volume (VT) and dynamic transpulmonary driving pressure, pressure-support and pressure-controlled ventilation would yield comparable lung damage in mild lung injury. METHODS: Male Wistar rats received endotoxin intratracheally and, after 24 h, were ventilated in pressure-support mode. Rats were then randomized to 2 h of pressure-controlled ventilation with VT, dynamic transpulmonary driving pressure, dynamic transpulmonary driving pressure, and inspiratory time similar to those of pressure-support ventilation. The primary outcome was the difference in dynamic transpulmonary driving pressure between pressure-support and pressure-controlled ventilation at similar VT; secondary outcomes were lung and diaphragm damage. RESULTS: At VT = 6 ml/kg, dynamic transpulmonary driving pressure was higher in pressure-support than pressure-controlled ventilation (12.0 ± 2.2 vs. 8.0 ± 1.8 cm H2O), whereas static transpulmonary driving pressure did not differ (6.7 ± 0.6 vs. 7.0 ± 0.3 cm H2O). Diffuse alveolar damage score and gene expression of markers associated with lung inflammation (interleukin-6), alveolar-stretch (amphiregulin), epithelial cell damage (club cell protein 16), and fibrogenesis (metalloproteinase-9 and type III procollagen), as well as diaphragm inflammation (tumor necrosis factor-α) and proteolysis (muscle RING-finger-1) were comparable between groups. At similar dynamic transpulmonary driving pressure, as well as dynamic transpulmonary driving pressure and inspiratory time, pressure-controlled ventilation increased VT, static transpulmonary driving pressure, diffuse alveolar damage score, and gene expression of markers of lung inflammation, alveolar stretch, fibrogenesis, diaphragm inflammation, and proteolysis compared to pressure-support ventilation. CONCLUSIONS: In the mild lung injury model use herein, at the same VT, pressure-support compared to pressure-controlled ventilation did not affect biologic markers. However, pressure-support ventilation was associated with a major difference between static and dynamic transpulmonary driving pressure; when the same dynamic transpulmonary driving pressure and inspiratory time were used for pressure-controlled ventilation, greater lung and diaphragm injury occurred compared to pressure-support ventilation.


Asunto(s)
Diafragma/lesiones , Diafragma/fisiopatología , Lesión Pulmonar/etiología , Lesión Pulmonar/fisiopatología , Respiración con Presión Positiva/efectos adversos , Respiración con Presión Positiva/métodos , Animales , Masculino , Respiración con Presión Positiva/normas , Ratas , Ratas Wistar , Mecánica Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología
5.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L823-L831, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553626

RESUMEN

Mesenchymal stromal (stem) cells (MSCs) are increasingly demonstrated to ameliorate experimentally induced lung injuries through disease-specific anti-inflammatory actions, thus suggesting that different in vivo inflammatory environments can influence MSC actions. To determine the effects of different representative inflammatory lung conditions, human bone marrow-derived MSCs (hMSCs) were exposed to in vitro culture conditions from bronchoalveolar lavage fluid (BALF) samples obtained from patients with either the acute respiratory distress syndrome (ARDS) or with other lung diseases including acute respiratory exacerbations of cystic fibrosis (CF) (non-ARDS). hMSCs were subsequently assessed for time- and BALF concentration-dependent effects on mRNA expression of selected pro- and anti-inflammatory mediators, and for overall patterns of gene and mRNA expression. Both common and disease-specific patterns were observed in gene expression of different hMSC mediators, notably interleukin (IL)-6. Conditioned media obtained from non-ARDS BALF-exposed hMSCs was more effective in promoting an anti-inflammatory phenotype in monocytes than was conditioned media from ARDS BALF-exposed hMSCs. Neutralizing IL-6 in the conditioned media promoted generation of anti-inflammatory monocyte phenotype. This proof of concept study suggest that different lung inflammatory environments potentially can alter hMSC behaviors. Further identification of these interactions and the driving mechanisms may influence clinical use of MSCs for treating lung diseases.


Asunto(s)
Antiinflamatorios/farmacología , Líquido del Lavado Bronquioalveolar/química , Medios de Cultivo Condicionados/farmacología , Fibrosis Quística/terapia , Células Madre Mesenquimatosas/citología , Neumonía/terapia , Síndrome de Dificultad Respiratoria/terapia , Fibrosis Quística/inmunología , Fibrosis Quística/patología , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neumonía/inmunología , Neumonía/patología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/patología
6.
J Cell Biochem ; 115(6): 1023-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24515922

RESUMEN

All adult tissues, including the lung, have some capacity to self-repair or regenerate through the replication and differentiation of stem cells resident within these organs. While lung resident stem cells are an obvious candidate cell therapy for lung diseases, limitations exist regarding our knowledge of the biology of these cells. In contrast, there is considerable interest in the therapeutic potential of exogenous cells, particularly mesenchymal stem/stromal cells (MSCs), for lung diseases. Bone marrow derived-MSCs are the most studied cell therapy for these diseases. Preclinical studies demonstrate promising results using MSCs for diverse lung disorders, including emphysema, bronchopulmonary dysplasia, fibrosis, and acute respiratory distress syndrome. This mini-review will summarize ongoing clinical trials using MSCs in lung diseases, critically examine the data supporting their use for this purpose, and discuss the next steps in the translational pathway for MSC therapy of lung diseases.


Asunto(s)
Ensayos Clínicos como Asunto , Enfermedades Pulmonares/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Adulto , Animales , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Enfermedades Pulmonares/metabolismo , Modelos Biológicos
7.
Respir Res ; 15: 118, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25272959

RESUMEN

We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-ß levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.


Asunto(s)
Células de la Médula Ósea/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Enfisema Pulmonar/patología , Enfisema Pulmonar/terapia , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Resultado del Tratamiento
8.
Cell Physiol Biochem ; 32(6): 1681-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24356399

RESUMEN

BACKGROUND/AIMS: Bone marrow-derived cells (BMDCs) reduced mechanical and histologic changes in the lung in a murine model of silicosis, but these beneficial effects did not persist in the course of lung injury. We hypothesized that repeated administration of BMDCs may decrease lung inflammation and remodeling thus preventing disease progression. METHODS: One hundred and two C57BL/6 mice were randomly divided into SIL (silica, 20 mg intratracheally [IT]) and control (C) groups (saline, IT). C and SIL groups were further randomized to receive BMDCs (2×10(6) cells) or saline IT 15 and 30 days after the start of the protocol. RESULTS: By day 60, BMDCs had decreased the fractional area of granuloma and the number of polymorphonuclear cells, macrophages (total and M1 phenotype), apoptotic cells, the level of transforming growth factor (TGF)-ß' and types I and III collagen fiber content in the granuloma. In the alveolar septa, BMDCs reduced the amount of collagen and elastic fibers, TGF-ß, and the number of M1 and apoptotic cells. Furthermore, interleukin (IL)-1ß, IL-1R1, caspase-3 mRNA levels decreased and the level of IL-1RN mRNA increased. Lung mechanics improved after BMDC therapy. The presence of male donor cells in lung tissue was not observed using detection of Y chromosome DNA. CONCLUSION: repeated administration of BMDCs reduced inflammation, fibrogenesis, and elastogenesis, thus improving lung mechanics through the release of paracrine factors.


Asunto(s)
Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Silicosis/prevención & control , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Citocinas/genética , Citocinas/metabolismo , Progresión de la Enfermedad , Femenino , Granuloma/metabolismo , Granuloma/patología , Pulmón/metabolismo , Pulmón/patología , Macrófagos/citología , Macrófagos/inmunología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Dióxido de Silicio/toxicidad , Silicosis/etiología , Silicosis/cirugía
9.
Int Immunopharmacol ; 124(Pt B): 111004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778171

RESUMEN

BACKGROUND: Dexmedetomidine (DEX) and low-dose ketamine (KET) present neuroprotective effects in acute ischemic stroke (AIS); however, to date, no studies have evaluated which has better protective effects not only on the brain but also lungs in AIS. METHODS: AIS-induced Wistar rats (390 ± 30 g) were randomized after 24-h, receiving dexmedetomidine (STROKE-DEX, n = 10) or low-dose S(+)-ketamine (STROKE-KET, n = 10). After 1-h protective ventilation, perilesional brain tissue and lungs were removed for histologic and molecular biology analysis. STROKE animals (n = 5), receiving sodium thiopental but not ventilated, had brain and lungs removed for molecular biology analysis. Effects of DEX and KET mean plasma concentrations on alveolar macrophages, neutrophils, and lung endothelial cells, extracted primarily 24-h after AIS, were evaluated. RESULTS: In perilesional brain tissue, apoptosis did not differ between groups. In STROKE-DEX, compared to STROKE-KET, tumor necrosis factor (TNF)-α and vascular cell adhesion molecule-1 (VCAM-1) expressions were reduced, but no changes in nuclear factor erythroid 2-related factor-2 (Nrf2) and super oxide dismutase (SOD)-1 were observed. In lungs, TNF-α and VCAM-1 were reduced, whereas Nrf2 and SOD-1 were increased in STROKE-DEX. In alveolar macrophages, TNF-α and inducible nitric oxide synthase (M1 macrophage phenotype) were lower and arginase and transforming growth factor-ß (M2 macrophage phenotype) higher in STROKE-DEX. In lung neutrophils, CXC chemokine receptors (CXCR2 and CXCR4) were higher in STROKE-DEX. In lung endothelial cells, E-selectin and VCAM-1 were lower in STROKE-DEX. CONCLUSIONS: In the current AIS model, dexmedetomidine compared to low-dose ketamine reduced inflammation and endothelial cell damage in both brain and lung, suggesting greater protection.


Asunto(s)
Dexmedetomidina , Accidente Cerebrovascular Isquémico , Ketamina , Accidente Cerebrovascular , Ratas , Animales , Ketamina/metabolismo , Dexmedetomidina/uso terapéutico , Dexmedetomidina/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratas Wistar , Pulmón/patología , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo
10.
An Acad Bras Cienc ; 83(4): 1385-96, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22159348

RESUMEN

Several distinct stimuli can be used to reproduce histological and functional features of human emphysema, a leading cause of disability and death. Since cigarette smoke is the main cause of emphysema in humans, experimental researches have attempted to reproduce this situation. However, this is an expensive and cumbersome method of emphysema induction, and simpler, more efficacious alternatives have been sought. Among these approaches, elastolytic enzymes have been widely used to reproduce some characteristics of human cigarette smoke-induced disease, such as: augmentation of airspaces, inflammatory cell influx into the lungs, and systemic inflammation. Nevertheless, the use of elastase-induced emphysema models is still controversial, since the disease pathways involved in elastase induction may differ from those occurring in smoke-induced emphysema. This indicates that the choice of an emphysema model may impact the results of new therapies or drugs being tested. The aim of this review is to compare the mechanisms of disease induction in smoke and elastase emphysema models, to describe the differences among various elastase models, and to establish the advantages and disadvantages of elastase-induced emphysema models. More studies are required to shed light on the mechanisms of elastase-induced emphysema.


Asunto(s)
Modelos Animales de Enfermedad , Elastasa Pancreática/efectos adversos , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/enzimología , Animales , Fumar/efectos adversos
11.
Oxid Med Cell Longev ; 2021: 6644002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37448755

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a progressive and disabling disorder marked by airflow limitation and extensive destruction of lung parenchyma. Cigarette smoke is the major risk factor for COPD development and has been associated with increased oxidant burden on multiple cell types in the lungs. Elevated levels of reactive oxygen species (ROS) may significantly affect expression of biological molecules, signaling pathways, and function of antioxidant defenses. Although inflammatory cells, such as neutrophils and macrophages, contribute to the release of large quantities of ROS, mitochondrial dysfunction plays a critical role in ROS production due to oxidative phosphorylation. Although mitochondria are dynamic organelles, excess oxidative stress is able to alter mitochondrial function, morphology, and RNA and protein content. Indeed, mitochondria may change their shape by undergoing fusion (regulated by mitofusin 1, mitofusin 2, and optic atrophy 1 proteins) and fission (regulated by dynamin-related protein 1), which are essential processes to maintain a healthy and functional mitochondrial network. Cigarette smoke can induce mitochondrial hyperfusion, thus reducing mitochondrial quality control and cellular stress resistance. Furthermore, diminished levels of enzymes involved in the mitophagy process, such as Parkin (a ubiquitin ligase E3) and the PTEN-induced putative kinase 1 (PINK1), are commonly observed in COPD and correlate directly with faulty removal of dysfunctional mitochondria and consequent cell senescence in this disorder. In this review, we highlight the main mechanisms for the regulation of mitochondrial quality and how they are affected by oxidative stress during COPD development and progression.

12.
Sci Rep ; 11(1): 23133, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848804

RESUMEN

Acute ischemic stroke is associated with pulmonary complications, and often dexmedetomidine and propofol are used to decrease cerebral metabolic rate. However, it is unknown the immunomodulatory actions of dexmedetomidine and propofol on brain and lungs during acute ischemic stroke. The effects of dexmedetomidine and propofol were compared on perilesional brain tissue and lung damage after acute ischemic stroke in rats. Further, the mean amount of both sedatives was directly evaluated on alveolar macrophages and lung endothelial cells primarily extracted 24-h after acute ischemic stroke. In twenty-five Wistar rats, ischemic stroke was induced and after 24-h treated with sodium thiopental (STROKE), dexmedetomidine and propofol. Dexmedetomidine, compared to STROKE, reduced diffuse alveolar damage score [median(interquartile range); 12(7.8-15.3) vs. 19.5(18-24), p = 0.007)], bronchoconstriction index [2.28(2.08-2.36) vs. 2.64(2.53-2.77), p = 0.006], and TNF-α expression (p = 0.0003), while propofol increased VCAM-1 expression compared to STROKE (p = 0.0004). In perilesional brain tissue, dexmedetomidine, compared to STROKE, decreased TNF-α (p = 0.010), while propofol increased VCAM-1 compared to STROKE (p = 0.024). In alveolar macrophages and endothelial cells, dexmedetomidine decreased IL-6 and IL-1ß compared to STROKE (p = 0.002, and p = 0.040, respectively), and reduced IL-1ß compared to propofol (p = 0.014). Dexmedetomidine, but not propofol, induced brain and lung protection in experimental acute ischemic stroke.


Asunto(s)
Encéfalo/efectos de los fármacos , Dexmedetomidina/administración & dosificación , Hipnóticos y Sedantes/administración & dosificación , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Pulmón/efectos de los fármacos , Propofol/administración & dosificación , Animales , Isquemia Encefálica/prevención & control , Dexmedetomidina/efectos adversos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Hipnóticos y Sedantes/efectos adversos , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Macrófagos Alveolares/efectos de los fármacos , Masculino , Propofol/efectos adversos , Ratas , Ratas Wistar , Tiopental , Factor de Necrosis Tumoral alfa/biosíntesis , Molécula 1 de Adhesión Celular Vascular/biosíntesis
13.
PLoS One ; 16(8): e0256021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34415935

RESUMEN

BACKGROUND: We hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS: Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis. RESULTS: BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure-time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury. CONCLUSION: In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua/métodos , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Aguda/patología , Animales , Diafragma/patología , Endotelio/patología , Pulmón/patología , Masculino , Ratas , Ratas Wistar , Respiración , Síndrome de Dificultad Respiratoria/fisiopatología , Volumen de Ventilación Pulmonar/fisiología
14.
Front Cell Dev Biol ; 9: 661385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136481

RESUMEN

Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) from patients with chronic obstructive pulmonary disease (COPD) appear to be phenotypically and functionally similar to BM-MSCs from healthy sources in vitro, the impact of COPD on MSC metabolism and mitochondrial function has not been evaluated. In this study, we aimed to comparatively characterize MSCs from healthy and emphysematous donors (H-MSCs and E-MSCs) in vitro and to assess the therapeutic potential of these MSCs and their extracellular vesicles (H-EVs and E-EVs) in an in vivo model of severe emphysema. For this purpose, C57BL/6 mice received intratracheal porcine pancreatic elastase once weekly for 4 weeks to induce emphysema; control animals received saline under the same protocol. Twenty-four hours after the last instillation, animals received saline, H-MSCs, E-MSCs, H-EVs, or E-EVs intravenously. In vitro characterization demonstrated that E-MSCs present downregulation of anti-inflammatory (TSG-6, VEGF, TGF-ß, and HGF) and anti-oxidant (CAT, SOD, Nrf2, and GSH) genes, and their EVs had larger median diameter and lower average concentration. Compared with H-MSC, E-MSC mitochondria also exhibited a higher respiration rate, were morphologically elongated, expressed less dynamin-related protein-1, and produced more superoxide. When co-cultured with alveolar macrophages, both H-MSCs and E-MSCs induced an increase in iNOS and arginase-1 levels, but only H-MSCs and their EVs were able to enhance IL-10 levels. In vivo, emphysematous mice treated with E-MSCs or E-EVs demonstrated no amelioration in cardiorespiratory dysfunction. On the other hand, H-EVs, but not H-MSCs, were able to reduce the neutrophil count, the mean linear intercept, and IL-1ß and TGF-ß levels in lung tissue, as well as reduce pulmonary arterial hypertension and increase the right ventricular area in a murine model of elastase-induced severe emphysema. In conclusion, E-MSCs and E-EVs were unable to reverse cardiorespiratory dysfunction, whereas H-EVs administration was associated with a reduction in cardiovascular and respiratory damage in experimental severe emphysema.

15.
Front Neurol ; 11: 1001, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013661

RESUMEN

Background: There is widespread debate regarding the use of albumin in ischemic stroke. We tested the hypothesis that an iso-oncotic solution of albumin (5%), administered earlier after acute ischemic stroke (3 h), could provide neuroprotection without causing kidney damage, compared to a hyper-oncotic albumin (20%) and saline. Objective: To compare the effects of saline, iso-oncotic albumin, and hyper-oncotic albumin, all titrated to similar hemodynamic targets, on the brain and kidney. Methods: Ischemic stroke was induced in anesthetized male Wistar rats (n = 30; weight 437 ± 68 g) by thermocoagulation of pial blood vessels of the primary somatosensory, motor, and sensorimotor cortices. After 3 h, animals were anesthetized and randomly assigned (n = 8) to receive 0.9% NaCl (Saline), iso-oncotic albumin (5% ALB), and hyper-oncotic albumin (20% ALB), aiming to maintain hemodynamic stability (defined as distensibility index of inferior vena cava <25%, mean arterial pressure >80 mmHg). Rats were then ventilated using protective strategies for 2 h. Of these 30 animals, 6 were used as controls (focal ischemic stroke/no fluid). Results: The total fluid volume infused was higher in the Saline group than in the 5% ALB and 20% ALB groups (mean ± SD, 4.3 ± 1.6 vs. 2.7 ± 0.6 and 2.6 ± 0.5 mL, p = 0.03 and p = 0.02, respectively). The total albumin volume infused (g/kg) was higher in the 20% ALB group than in the 5% ALB group (1.4 ± 0.6 vs. 0.4 ± 0.2, p < 0.001). Saline increased neurodegeneration (Fluoro-Jade C staining), brain inflammation in the penumbra (higher tumor necrosis factor-alpha expression), and blood-brain barrier damage (lower gene expressions of claudin-1 and zona occludens-1) compared to both iso-oncotic and hyper-oncotic albumins, whereas it reduced the expression of brain-derived neurotrophic factor (a marker of neuroregeneration) compared only to iso-oncotic albumin. In the kidney, hyper-oncotic albumin led to greater damage as well as higher gene expressions of kidney injury molecule-1 and interleukin-6 than 5% ALB (p < 0.001). Conclusions: In this model of focal ischemic stroke, only iso-oncotic albumin had a protective effect against brain and kidney damage. Fluid therapy thus requires careful analysis of impact not only on the brain but also on the kidney.

16.
J Appl Physiol (1985) ; 129(5): 1062-1074, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909923

RESUMEN

Obesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity. Control animals were obtained from unculled litters. From postnatal day 150, diaphragm ultrasound, computed tomography, high-resolution respirometry, immunohistochemical, biomolecular, and ultrastructural histological analyses were performed. The diaphragms of obese animals, compared with those of controls, presented changes in morphology as increased thickening fraction, diaphragm excursion, and diaphragm dome height, as well as increased mitochondrial respiratory capacity coupled to ATP synthesis and maximal respiratory capacity. Fatty acid synthase gene expression was also higher in obese animals, suggesting a source of energy for the respiratory chain. Myosin heavy chain-IIA was increased, indicating shift from glycolytic toward oxidative muscle fiber profile. Diaphragm tissue also exhibited ultrastructural changes, such as compact, round, and swollen mitochondria with fainter cristae and more lysosomal bodies. Dynamin-1 expression in the diaphragm was reduced in obese rats, suggesting decreased mitochondrial fission. Furthermore, gene expressions of peroxisome γ proliferator-activated receptor coactivator-1α and superoxide dismutase-2 were lower in obese animals than in controls, which may indicate a predisposition to oxidative injury. In conclusion, in the obesity model used herein, muscle fiber phenotype was altered in a manner likely associated with increased mitochondrial respiratory capability, suggesting respiratory adaptation to increased metabolic demand.NEW & NOTEWORTHY Obesity has been associated with peripheral muscle dysfunction; however, little is known about its impact on the diaphragm. In the current study, we found high oxygen consumption in diaphragm tissue and changes in muscle fiber phenotypes toward a more oxidative profile in experimental obesity.


Asunto(s)
Diafragma , Obesidad , Animales , Diafragma/metabolismo , Metabolismo Energético , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Ratas , Ratas Wistar
17.
Respir Physiol Neurobiol ; 165(2-3): 202-7, 2009 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-19135181

RESUMEN

The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres' content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11%] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain.


Asunto(s)
Asma/genética , Asma/inmunología , Matriz Extracelular/inmunología , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Mecánica Respiratoria/genética , Animales , Asma/inducido químicamente , Enfermedad Crónica , Modelos Animales de Enfermedad , Técnicas In Vitro , Ratones , Ratones Endogámicos A , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Ovalbúmina/farmacología , Mecánica Respiratoria/inmunología , Especificidad de la Especie
18.
Respir Physiol Neurobiol ; 160(1): 54-64, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17919996

RESUMEN

This study investigated the impact of three different oral nutritional support regimens on lung mechanics and remodelling in young undernourished Wistar rats. In the nutritionally deprived group, rats received one-third of their usual daily food consumption for 4 weeks. Undernourished rats were divided into three groups receiving a balanced, glutamine-supplemented, or long-chain triglyceride-supplemented diet for 4 weeks. In the two control groups, rats received food ad libitum for 4 (C4) or 8 weeks. Lung viscoelastic pressure and static elastance were higher in undernourished compared to C4 rats. After refeeding, lung mechanical data remained altered except for the glutamine-supplemented group. Undernutrition led to a reduced amount of elastic and collagen fibres in the alveolar septa. Elastic fibre content returned to control with balanced and glutamine-supplemented diets, but increased with long-chain triglyceride-supplemented diet. The amount of collagen fibre augmented independent of nutritional support. In conclusion, glutamine-supplemented diet is better at reducing morphofunctional changes than other diets after 4 weeks of refeeding.


Asunto(s)
Pulmón/fisiopatología , Desnutrición/fisiopatología , Apoyo Nutricional , Mecánica Respiratoria/fisiología , Animales , Western Blotting , Peso Corporal/fisiología , Líquido del Lavado Bronquioalveolar/química , Colágeno/fisiología , Impulso (Psicología) , Elasticidad , Capacidad Residual Funcional/fisiología , Glutamina/farmacología , Lípidos/química , Pulmón/patología , Desnutrición/dietoterapia , Microscopía Electrónica de Transmisión , Fibras Musculares Esqueléticas/fisiología , Proteínas/química , Alveolos Pulmonares/patología , Ratas , Ratas Wistar , Músculos Respiratorios/efectos de los fármacos , Músculos Respiratorios/fisiopatología , Triglicéridos/farmacología
19.
Respir Physiol Neurobiol ; 160(1): 91-8, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17950048

RESUMEN

Forty-eight BALB/c mice were divided into two groups of 24 animals each. In the control group (CTRL) saline was intratracheally instilled, while the virus group (VR) received rAAV2-GFP (4 x 10(9) particles). These groups were subdivided into four sub-groups (n=6). Pulmonary mechanical parameters were analyzed after 3 weeks (VR1d3w) and at 1 (VR2d1w), 2 (VR2d2w) and 3 weeks (VR2d3w) after a second AAV2 dose. Fractions of the area of alveolar collapse and the amount of polymorpho- and mononuclear cells were determined by point-counting technique. Viral transduction was evaluated by immunohistochemistry. Lung mechanical data were similar in all groups. However, there was an increase in airway and lung parenchyma cellularity and in the fraction of area of alveolar collapse in the VR2d2w group, which nonetheless decreased with time. There was no evidence of apoptosis in any group. In conclusion, the gene transfer vector AAV2 induces, in the lung, a discrete inflammatory reaction that does not affect either baseline lung mechanics or airway hyperresponsiveness.


Asunto(s)
Dependovirus/genética , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Pulmón/fisiología , Animales , Apoptosis/efectos de los fármacos , Broncodilatadores/farmacología , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica , Pulmón/patología , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos BALB C , ARN/genética , ARN/aislamiento & purificación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Mecánica Respiratoria/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Stem Cell Res Ther ; 9(1): 296, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409216

RESUMEN

BACKGROUND: A single administration of mesenchymal stromal cells (MSCs) has been shown to reduce lung inflammation in experimental elastase-induced emphysema; however, effects were limited in terms of lung-tissue repair and cardiac function improvement. We hypothesized that two doses of MSCs could induce further lung and cardiovascular repair by mitigating inflammation and remodeling in a model of emphysema induced by multiple elastase instillations. We aimed to comparatively investigate the effects of one versus two doses of MSCs, administered 1 week apart, in a murine model of elastase-induced emphysema. METHODS: C57BL/6 mice were randomly divided into control (CTRL) and emphysema (E) groups. Mice in the E group received porcine pancreatic elastase (0.2 IU, 50 µL) intratracheally once weekly for four consecutive weeks; the CTRL animals received sterile saline (50 µL) using the same protocol. Three hours after the last instillation, the E group was further randomized to receive either saline (SAL) or murine MSCs (105 cells) intratracheally, in one or two doses (1 week apart). Fourteen days later, mice were euthanized, and all data analyzed. RESULTS: Both one and two doses of MSCs improved lung mechanics, reducing keratinocyte-derived chemokine and transforming growth factor-ß levels in lung homogenates, total cell and macrophage counts in bronchoalveolar lavage fluid (BALF), and collagen fiber content in airways and blood vessels, as well as increasing vascular endothelial growth factor in lung homogenates and elastic fiber content in lung parenchyma. However, only the two-dose group exhibited reductions in tumor necrosis factor-α in lung tissue, BALF neutrophil and lymphocyte count, thymus weight, and total cellularity, as well as CD8+ cell counts and cervical lymph node CD4+ and CD8+ T cell counts, as well as further increased elastic fiber content in the lung parenchyma and reduced severity of pulmonary arterial hypertension. CONCLUSIONS: Two doses of MSCs enhanced lung repair and improvement in cardiac function, while inducing T cell immunosuppression, mainly of CD8+ cells, in elastase-induced emphysema.


Asunto(s)
Sistema Cardiovascular/patología , Pulmón/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Enfisema Pulmonar/terapia , Cicatrización de Heridas , Animales , Líquido del Lavado Bronquioalveolar , Sistema Cardiovascular/fisiopatología , Colágeno/metabolismo , Elastina/biosíntesis , Femenino , Terapia de Inmunosupresión , Inflamación/patología , Mediadores de Inflamación/metabolismo , Pulmón/fisiopatología , Tejido Linfoide/patología , Ratones Endogámicos C57BL , Enfisema Pulmonar/patología , Enfisema Pulmonar/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA