Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 194: 106819, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067493

RESUMEN

Macrophomina phaseolina is a wide host ranged soil-borne fungal plant pathogen. It infects more than 500 host plant species belonging to 100 families. Many important oil-seed and leguminous crops are known to be attacked by this devastating plant pathogen. In the present study, antifungal potential of flowers of a leguminous tree Acacia nilotica subsp. indica, was assessed against this pathogen through bioassays guided fractionation. Initially, methanolic extracts of 1 %-5 % of leaf, flower, root-bark and stem-bark of the plant species under consideration were evaluated for their antifungal potential against the target pathogen. Among these, the best antifungal activity was shown by flower extract. The reduction in growth of the test fungal strain was 27-49 %, 4-40 % and 2-27 % due to flower, root-bark and leaf extracts, respectivey, over control. Flower extract was partitioned using n-hexane, chloroform, ethyl acetate and n-butanol as the solvents. Bioassays guided study of these fractions of methanolic extract of flower revealed that high antifungal potential was shown by n-hexane and chloroform fractions against M. phaseolina causing 26-53 % and 28-50 % decline in fungal biomass, respectively, as compared to that of control. GC-MS analysis of chloroform fraction revealed the presence of 27 compounds in this fraction. Among these cyclopentanol,-1-methyl (10.93 %) was the predominant compound followed by methyl, 4,4-dimethyl butanoate (7.04 %), 1-pentanol (6.80 %), 2-propanol, 1-cyclopropyl (6.11 %), 1H,imidazole-4-5-dihydro-2-methyl (5.93 %), trichloroethane (5.91 %), carbonic acid-ethyl hexyl ester (4.59 %), 1,4-butandiol,2,3-bis(methylene)- (4.54 %) and [S]-3,4-dimethyl pentanol (4.48 %).

2.
Environ Res ; 245: 117878, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38147921

RESUMEN

A tin oxide (SnO2) nanostructure was prepared using Matricaria recutita leaf extract to investigate its anticancer activity against SK-MEL-28 cells. The tetragonal crystal structure of tin oxide nanoparticles with an average crystal size of 27 nm was confirmed by X-ray diffraction (XRD) analysis. The tetragonal crystal structure of the tin oxide nanoparticles, with an average crystallite size of 27 nm, was confirmed by XRD an absorbance peak at 365 nm was identified by UV-visible spectroscopy analysis as belonging to the bio-mediated synthesis of SnO2 nanoparticles. The SnO2 NPs are capped and stabilized with diverse functional groups derived from bioactive molecules, including aldehydes, benzene rings, amines, alcohols, and carbonyl stretch protein molecules. Fourier transform infrared spectroscopy (FTIR) analysis validated the presence of these capping and stabilizing chemical bonds. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed the cauliflower-shaped morphology of the SnO2 nanoparticles with an average particle size of 28 nm. The antimicrobial activity of both prepared and encapsulated samples confirmed their biological activities. Furthermore, both prepared and encapsulated tin oxide samples exhibited excellent anticancer activity against SK-MEL-28 human cancer cells. The present study introduces a reliable and uncomplicated approach to produce SnO2 nanoparticles and demonstrates their effectiveness in various applications, including cancer therapy, drug administration, and disinfectant.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanoestructuras , Humanos , Antiinfecciosos/farmacología , Compuestos de Estaño/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Antibacterianos/química , Difracción de Rayos X
3.
Environ Res ; 260: 119481, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917930

RESUMEN

An effective approach to producing sophisticated miniaturized and nanoscale materials involves arranging nanomaterials into layered hierarchical frameworks. Nanostructured layered materials are constructed to possess isolated propagation assets, massive surface areas, and envisioned amenities, making them suitable for a variety of established and novel applications. The utilization of various techniques to create nanostructures adorned with metal nanoparticles provides a secure alternative or reinforcement for the existing physicochemical methods. Supported metal nanoparticles are preferred due to their ease of recovery and usage. Researchers have extensively studied the catalytic properties of noble metal nanoparticles using various selective oxidation and hydrogenation procedures. Despite the numerous advantages of metal-based nanoparticles (NPs), their catalytic potential remains incompletely explored. This article examines metal-based nanomaterials that are supported by layers, and provides an analysis of their manufacturing, procedures, and synthesis. This study incorporates both 2D and 3D layered nanomaterials because of their distinctive layered architectures. This review focuses on the most common metal-supported nanocomposites and methodologies used for photocatalytic degradation of organic dyes employing layered nanomaterials. The comprehensive examination of biological and ecological cleaning and treatment techniques discussed in this article has paved the way for the exploration of cutting-edge technologies that can contribute to the establishment of a sustainable future.

4.
Physiol Mol Biol Plants ; 30(1): 49-66, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38435857

RESUMEN

Seed bio-priming is a simple and friendly technique to improve stress resilience against fungal diseases in plants. An integrated approach of maize seeds biopriming with Ochrobactrum ciceri was applied in Zn-amended soil to observe the response against Fusarium rot disease of Zea mays (L.) caused by Fusarium verticillioides. Initially, the pathogen isolated from the infected corn was identified as F. verticillioides based on morphology and sequences of the internally transcribed spacer region of the ribosomal RNA gene. Re-inoculation of maize seed with the isolated pathogen confirmed the pathogenicity of the fungus on the maize seeds. In vitro, the inhibitory potential of O. ciceri assessed on Zn-amended/un-amended growth medium revealed that antifungal potential of O. ciceri significantly improved in the Zn-amended medium, leading to 88% inhibition in fungal growth. Further assays with different concentrations (25, 50, and 75%) of cell pellet and the cultural filtrate of O. ciceri (with/without the Zn-amendment) showed a dose-dependent inhibitory effect on mycelial growth of the pathogen that also led to discoloration, fragmentation, and complete disintegration of the fungus hyphae and spores at 75% dose. In planta, biopriming of maize seeds with O. ciceri significantly managed disease, improved the growth and biochemical attributes (up to two-fold), and accelerated accumulation of lignin, polyphenols, and starch, especially in the presence of basal Zn. The results indicated that bioprimed seeds along with Zn as the most promising treatment for managing disease and improving plant growth traits through the enhanced accumulation of lignin, polyphenols, and starch, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA