Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(18): e2208069, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828795

RESUMEN

Nanoparticles offer unique physical and chemical properties. Dip pen nanolithography of nanoparticles enables versatile patterning and nanofabrication with potential application in electronics and sensing, but is not well studied yet. Herein, the patterned deposition of various nanoparticles onto unmodified silicon substrates is presented. It is shown that aqueous solutions of hydrophilic citrate and cyclodextrin functionalized gold nanoparticles as well as poly(acrylic) acid decorated magnetite nanoparticles are feasible for writing nanostructures. Both smaller and larger nanoparticles can be patterned. Hydrophobic oleylamine or n-dodecylamine capped gold nanoparticles and oleic acid decorated magnetite nanoparticles are deposited from toluene. Tip loading is carried out by dip-coating, and writing succeeds fast within 0.1 s. Also, coating with longer tip dwell times, at different relative humidity and varying frequency are studied for deposition of nanoparticle clusters. The resulting feature size is between 300 and 1780 nm as determined by scanning electron microscopy. Atomic force microscopy confirms that the heights of the deposited structures correspond to a single or double layer of nanoparticles. Higher writing speeds lead to smaller line thicknesses, offering possibilities to more complex structures. Dip pen nanolithography can hence be used to pattern nanoparticles on silicon substrates independent of the surface chemistry.

2.
Chemistry ; 29(60): e202301482, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37488067

RESUMEN

Surface modification of indium tin oxide (ITO) electrodes with organic molecules is known to tune their work function which results in higher charge carrier selectivity in corresponding organic electronic devices and hence influences the performance of organic solar cells. In recent years, N-heterocyclic carbenes (NHCs) have also been proven to be capable to modify the work function of metals and semimetals compared to the unfunctionalized surface via the formation of strong covalent bonds. In this report, we have designed and performed the modification of the ITO surface with NHC by using the zwitterionic bench stable IPr-CO2 as the NHC precursor, applied via spin coating. Upon modification, the work function of ITO electrodes was reduced significantly which resulted in electron selective contacts in corresponding organic photovoltaic devices. In addition, various characterization techniques and analytical methods are used to elucidate the nature of the bound species and the corresponding binding mechanism of the material to the ITO surface.

3.
Langmuir ; 39(15): 5342-5351, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37011284

RESUMEN

Photoswitches have long been employed in coatings for surfaces and substrates to harness light as a versatile stimulus to induce responsive behavior. We previously demonstrated the viability of arylazopyrazole (AAP) as a photoswitch in self-assembled monolayers (SAMs) on silicon and glass surfaces for photoresponsive wetting applications. We now aim to transfer the excellent photophysical properties of AAPs to polymer brush coatings. Compared to SAMs, polymer brushes offer enhanced stability and an increase of the thickness and density of the functional organic layer. In this work, we present thiolactone acrylate copolymer brushes which can be post-modified with AAP amines as well as hydrophobic acrylates, making use of the unique chemistry of the thiolactones. This strategy enables photoresponsive wetting with a tuneable range of contact angle change on glass substrates. We show the successful synthesis of thiolactone hydroxyethyl acrylate copolymer brushes by means of surface-initiated atom-transfer radical polymerization with the option to either prepare homogeneous brushes or to prepare micrometer-sized brush patterns by microcontact printing. The polymer brushes were analyzed by atomic force microscopy, time-of-flight secondary ion spectrometry, and X-ray photoelectron spectroscopy. Photoresponsive behavior imparted to the brushes by means of post-modification with AAP is monitored by UV/vis spectroscopy, and wetting behavior of homogeneous brushes is measured by static and dynamic contact angle measurements. The brushes show an average change in static contact angle of around 13° between E and Z isomer of the AAP photoswitch for at least five cycles, while the range of contact angle change can be fine-tuned between 53.5°/66.5° (E/Z) and 81.5°/94.8° (E/Z) by post-modification with hydrophobic acrylates.

4.
Anal Bioanal Chem ; 415(5): 991-999, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36625895

RESUMEN

High spatial resolution mass spectrometry imaging has been identified as a key technology needed to improve understanding of the chemical components that influence antibiotic resistance within biofilms, which are communities of micro-organisms that grow attached to a surface. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers the unique ability for label-free 3D imaging of organic molecules with sub-micrometer spatial resolution and high sensitivity. Several studies of biofilms have been done with the help of ToF-SIMS, but none of those studies have shown 3D imaging of antibiotics in native-state hydrated biofilms with cell-level resolution. Because ToF-SIMS measurements must be performed in a high-vacuum environment, cryogenic preparation and analysis are necessary to preserve the native biofilm structure and antibiotic spatial distribution during ToF-SIMS measurements. In this study, we have investigated the penetration of the antibiotic ciprofloxacin into Bacillus subtilis biofilms using sub-micrometer resolution 3D imaging cryo-ToF-SIMS. B. subtilis biofilms were exposed to physiologically relevant levels of ciprofloxacin. The treated biofilms were then plunge-frozen in liquid propane and analyzed with ToF-SIMS under cryogenic conditions. Multivariate analysis techniques, including multivariate curve resolution (MCR) and inverse maximum signal factor (iMSF) denoising, were used to aid analysis of the data and facilitate high spatial resolution 3D imaging of the biofilm, providing individually resolved cells and spatially resolved ciprofloxacin intensity at "real world" concentrations.


Asunto(s)
Imagenología Tridimensional , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos , Ciprofloxacina , Biopelículas , Antibacterianos
5.
Anal Chem ; 94(6): 2835-2843, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35107995

RESUMEN

Improving signal-to-noise and, thereby, image contrast is one of the key challenges needed to expand the useful applications of mass spectrometry imaging (MSI). Both instrumental and data analysis approaches are of importance. Univariate denoising techniques have been used to improve contrast in MSI images with varying levels of success. Additionally, various multivariate analysis (MVA) methods have proven to be effective for improving image contrast. However, the distribution of important but low intensity ions can be obscured in the MVA analysis, leading to a loss of chemically specific information. In this work we propose inverse maximum signal factors (MSF) denoising as an alternative approach to both denoising and multivariate analysis for MSI imaging. This approach differs from the standard MVA techniques in that the output is denoised images for each original mass peak rather than the frequently difficult to interpret scores and loadings. Five tests have been developed to optimize and validate the resulting denoised images. The algorithm has been tested on a range of simulated data with different levels of noise, correlated noise, varying numbers of underlying components, and nonlinear effects. In the simulations, an excellent correlation between the true images and the denoised images was observed for peaks with an original signal-to-noise ratio as low as 0.1, as long as there was sufficient intensity in the sum of the selected peaks. The power of the approach was then demonstrated on two time-of-flight secondary ion mass spectrometry (ToF-SIMS) images that contained largely uncorrelated noise and a laser post-ionization matrix-assisted laser desorption/ionization mass spectrometry (MALDI-2-MS) image that contained strongly correlated noise. The improvements in signal-to-noise increased with decreasing intensity of the original peaks. A signal-to-noise improvement of as much as two orders of magnitude was achieved for very low intensity peaks. MSF denoising is a powerful addition to the suite of image processing techniques available for studying mass spectrometry images.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa de Ion Secundario/métodos
6.
Small ; 18(37): e2203245, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35971144

RESUMEN

Surface patterning of functional materials is a key technology in various fields such as microelectronics, optics, and photonics. In micro- and nanofabrication, polymers are frequently employed either as photoreactive or thermoresponsive resists that enable further fabrication steps, or as functional adlayers in electronic and optical devices. In this article, a method is presented for imprint lithography using low molecular weight arylazoisoxazoles photoswitches instead of polymer resists. These photoswitches exhibit a rapid and reversible solid-to-liquid phase transition upon photo-isomerization at room temperature, making them highly suitable for reversible surface functionalization at ambient conditions. Beyond photo-induced imprint lithography with multiple write-and-erase cycles, prospective applications as patterned matrix for nanoparticles and etch resist on gold surfaces are demonstrated.

7.
Langmuir ; 38(2): 735-742, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34989243

RESUMEN

Surface coatings that respond to external influences and change their physical properties upon application of external stimuli are of great interest, with light being a particularly desirable choice. Photoswitches such as azobenzenes have been employed in a range of photoresponsive coatings. One striking change in physical property of many photoresponsive coatings is their responsive wettability upon illumination. In this work, we present photoswitchable self-assembled monolayers based on arylazopyrazoles (AAPs). In solution, AAPs offer significant improvements in terms of the photostationary state, thermal stability, and fatigue resistance. The AAP photoswitch is coupled to triethoxysilanes for an easy, one-step functionalization of glass and silicon oxide surfaces. We show the synthesis of AAP-based silanes and the successful surface functionalization, and we confirm the excellent photoswitchability of the AAPs in a self-assembled monolayer upon alternating irradiation with UV (365 nm) and green (520 nm) light. The self-assembled monolayers are investigated by UV/vis spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and contact angle goniometry. We furthermore investigate the effect of substitution of the AAPs on the photoresponsive wetting behavior and compare this with density functional theory (DFT) calculations of the dipole moments of the AAPs.

8.
Angew Chem Int Ed Engl ; 59(32): 13651-13656, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32271973

RESUMEN

A novel photoresponsive and fully conjugated N-heterocyclic carbene (NHC) has been synthesized that combines the excellent photophysical properties of arylazopyrazoles (AAPs) with an NHC that acts as a robust surface anchor (AAP-BIMe). The formation of self-assembled monolayers (SAMs) on gold was proven by ToF-SIMS and XPS, and the organic film displayed a very high stability at elevated temperatures. This stability was also reflected in a high desorption energy, which was determined by temperature-programmed SIMS measurements. E-/Z-AAP-BIMe@Au photoisomerization resulted in reversible alterations of the surface energy (i.e. wettability), the surface potential (i.e. work function), and the conductance (i.e. resistance). The effects could be explained by the difference in the dipole moment of the isomers. Furthermore, sequential application of a dummy ligand by microcontact printing and subsequent backfilling with AAP-BIMe allowed its patterning on gold. To the best of our knowledge, this is the first example of a photoswitchable NHC on a gold surface. These properties of AAP-BIMe@Au illustrate its suitability as a molecular switch for electronic devices.

9.
Langmuir ; 34(5): 2132-2138, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29334733

RESUMEN

In this paper, we show that carboxylic acid-functionalized molecules can be patterned by photochemical microcontact printing on tetrazole-terminated self-assembled monolayers. Upon irradiation, tetrazoles eliminate nitrogen to form highly reactive nitrile imines, which can be ligated with several different nucleophiles, carboxylic acids being the most reactive. As a proof of concept, we immobilized trifluoroacetic acid to monitor the reaction with X-ray photoelectron spectroscopy. Moreover, we also immobilized peptides and fabricated carbohydrate-lectin as well as biotin-streptavidin microarrays using this method. Surface-patterning was demonstrated by fluorescence microscopy and time-of-flight secondary ion mass spectrometry.

10.
Langmuir ; 34(30): 8750-8757, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29969039

RESUMEN

Artificial lipid membranes play a growing role in technical applications such as biosensors in pharmacological research and as model systems in the investigation of biological lipid films. In the standard procedure for displaying the distribution of membrane components, fluorescence microscopy, the fluorophores used can influence the distribution of the components and usually not all substances can be displayed at the same time. The discriminant analysis-based algorithm used in combination with scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) enables marker-free, quantitative, simultaneous recording of all membrane components. These data are used for reconstruction of distribution patterns. In the model system used for this survey, a tear fluid lipid layer, the distribution patterns of all lipids correlate well in calculated ToF-SIMS images and epi-fluorescence microscopic images. All epi-fluorescence microscopically viewable structures are visible when using both positive and negative secondary ions and can be reproduced with high lateral resolution in the submicrometer range despite the very low signal intensity and a very low signal-to-noise ratio. In addition, three-dimensional images can be obtained with a subnanometer depth resolution. Furthermore, structures and the distribution of substances that cannot be made visible by epi-fluorescence microscopy can be displayed. This enables new insights that cannot be gained by epi-fluorescence microscopy alone.


Asunto(s)
Algoritmos , Análisis Discriminante , Imagenología Tridimensional/métodos , Membranas Artificiales , Imagen Molecular/métodos , Lípidos/química , Espectrometría de Masa de Ion Secundario
11.
Angew Chem Int Ed Engl ; 57(35): 11465-11469, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29952056

RESUMEN

Patterned monolayers of N-heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC-CO2 adducts and NHC(H)[HCO3 ] salts. The NHC-modified areas showed an increased conductivity compared to unmodified gold surface areas. Furthermore, the remaining surface areas could be modified with a second, azide-functionalized carbene, facilitating further applications and post-printing modifications. Thorough elucidation by a variety of analytical methods offers comprehensive evidence for the viability of the methodology reported here. The protocol enables facile access to versatile, microstructured NHC-modified gold surfaces with highly stable patterns, enhanced conductivity, and the option for further modification.

12.
Langmuir ; 33(35): 8799-8804, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28351148

RESUMEN

Nanoclays are nanomaterials with versatile adsorptive properties. This contribution describes the generation of micropatterns of a nanoclay ("laponite") on ammonium-terminated, self-assembled monolayers (SAMs) on glass and silicon. Microstructured immobilization of the laponite was performed using micromolding in capillaries (MIMIC). The immobilization was verified using contact angle goniometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and fluorescence microscopy. Furthermore, laponite was modified with Nile red to generate a fluorescence enhancement-based surface sensor for the vitamin choline.

13.
Anal Chem ; 88(19): 9638-9646, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27661389

RESUMEN

Heterogeneous polymer coatings, such as those used in organic electronics and medical devices, are of increasing industrial importance. In order to advance the development of these types of systems, analytical techniques are required which are able to determine the elemental and molecular spatial distributions, on a nanometer scale, with very high detection efficiency and sensitivity. The goal of this study was to investigate the suitability of laser postionization secondary neutral mass spectrometry (Laser-SNMS) with a 157 nm postionization laser beam to image structured polymer mixtures and compare the results with time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements using Bi3+ primary ions. The results showed that Laser-SNMS is better suited than ToF-SIMS for unambiguous detection and submicrometer imaging of the wide range of polymers investigated. The data also showed that Laser-SNMS has the advantage of being much more sensitive (in general higher by more than an order of magnitude and peaking at up to 3 orders of magnitude) than ToF-SIMS while also showing superior performance on topographically complex structured insulating surfaces, due to significantly reduced field effects and a higher dynamic range as compared to ToF-SIMS. It is concluded that Laser-SNMS is a powerful complementary technique to ToF-SIMS for the analysis of heterogeneous polymers and other complex structured organic mixtures, providing submicrometer resolution and high sensitivity.


Asunto(s)
Rayos Láser , Imagen Molecular , Polímeros/análisis , Espectrometría de Masa de Ion Secundario , Estructura Molecular , Factores de Tiempo
14.
Langmuir ; 32(9): 2277-82, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26886297

RESUMEN

We developed a simple method to pattern self-assembled monolayers of tetrazole triethoxylsilane with a variety of different molecules by photochemical microcontact printing. Under irradiation, tetrazoles form highly reactive nitrile imines, which react with alkenes, alkynes, and thiols. The covalent linkage to the surface could be unambiguously demonstrated by fluorescence microscopy, because the reaction product is fluorescent in contrast to tetrazole. The modified surfaces were further analyzed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM), and contact angle goniometry. Protein-repellent micropatterns, a biotin-streptavidin array, and structured polymer brushes could be fabricated with this straightforward method for surface functionalization.

15.
Anal Chem ; 87(15): 7795-802, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26146009

RESUMEN

Much evidence suggests that membrane domains, termed lipid rafts, which are enriched in sphingomyeline and cholesterol play important roles in the regulation of physiological and pathophysiological processes. A label-free quantitative imaging method for lipids is lacking at present. We report an algorithm which enables us to identify and calculate the percentages of the ingredients of lipid mixtures from single-pixel time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra in model systems. The algorithm is based on a linear mixing model. Discriminant analysis is used to reduce the dimension of the data space. Calculations were separately performed for positive and negative ion mass spectra. Phosphatidylcholine and sphingomyeline which have identical headgroups and cannot be easily distinguished from another by positive ion mass spectra were included in the analysis. The algorithm outlined may more generally be used to calculate the percentages of ingredients of mixtures from spectra acquired by quite different methods such as X-ray photoelectron spectroscopy.

16.
Anal Bioanal Chem ; 407(8): 2203-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25420714

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to characterize the freeze-fracturing process of human epithelial PANC-1 and UROtsa cells. For this purpose, phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, and phosphatidylserine standard samples were investigated to find specific signals with both high specificity and signal intensity. The results were used to investigate single cells of subconfluent cell layers prepared with a special silicon wafer sandwich preparation technique. This freeze-fracturing technique strips cell membranes off the cells, isolating them on opposing silicon wafer substrates. Criteria were found for defining regions with stripped off cell membranes and, on the opposing wafer, complementary regions with the remaining cells. Measured ethanolamine/choline and serine/choline ratios in these regions clearly showed that in the freeze-fracturing process, the lipid bilayer of the plasma membrane is split along its central zone. Accordingly, only the outer lipid monolayer is stripped off the cell, while the inner lipid monolayer remains attached to the cell on the opposing wafer, thus allowing detailed analysis of a single lipid monolayer. Furthermore, it could be shown that using different washing procedures did not influence the transmembrane lipid distribution. Under optimized preparation conditions, it became feasible to detect lipids with a lateral resolution of approximately 100 nm. The data indicate that ToF-SIMS would be a very useful technique to study with very high lateral resolution changes in lipid composition caused, for example, by lipid storage diseases or pharmaceuticals that interfere with the lipid metabolism.


Asunto(s)
Membrana Celular/química , Células Epiteliales/química , Espectrometría de Masa de Ion Secundario/métodos , Línea Celular Tumoral , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Técnica de Fractura por Congelación , Humanos , Membrana Dobles de Lípidos/química , Metabolismo de los Lípidos , Lípidos/química
17.
Angew Chem Int Ed Engl ; 54(44): 13126-9, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26347244

RESUMEN

Triazolinedione (TAD) click reactions were combined with microcontact chemistry to print, erase, and reprint polymer brushes on surfaces. By patterning substrates with a TAD-tagged atom-transfer radical polymerization initiator (ATRP-TAD) and subsequent surface initiated ATRP, it was possible to graft micropatterned polymer brushes from both alkene- and indole-functionalized substrates. As a result of the dynamic nature of the Alder-ene adduct of TAD and indole at elevated temperatures, the polymer pattern could be erased while the regenerated indole substrate could be reused to print new patterns. To demonstrate the robustness of the methodology, the write-erase cycle was repeated four times.

18.
Org Biomol Chem ; 12(39): 7828-35, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25166737

RESUMEN

Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules. Recently, inverse electron demand Diels-Alder (iEDDA) reactions employing 1,2,4,5-tetrazines as electron deficient dienes emerged as powerful tools in this field. We adapted iEDDA in microcontact chemistry (µCC) in order to create enhanced surface functions. µCC is a straightforward soft-lithography technique which enables fast and large area patterning with high pattern resolutions. In this work, tetrazine functionalized surfaces were reacted with carbohydrates conjugated with norbornene or cyclooctyne acting as strained electron rich dienophiles employing µCC. It was possible to create monofunctional as well as bifunctional substrates which were specifically addressable by proteins. Furthermore we structured glass supported alkene terminated self-assembled monolayers with a tetrazine conjugated atom transfer radical polymerization (ATRP) initiator enabling surface grafted polymerizations of poly(methylacrylate) brushes. The success of the surface initiated iEDDA via µCC as well as the functionalization with natural and synthetic polymers was verified via fluorescence and optical microscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).


Asunto(s)
Productos Biológicos/química , Reacción de Cicloadición , Electrones , Polímeros/química , Alquenos/química , Manosa/química , Polimerizacion , Polímeros/síntesis química , Impresión , Propiedades de Superficie
19.
J Am Soc Mass Spectrom ; 34(2): 218-226, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565282

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the most important techniques for chemical imaging of nanomaterials and biological samples with high lateral resolution. However, low ionization efficiency limits the detection of many molecules at low concentrations or in very small volumes. One promising approach to increasing the sensitivity of the technique is by the addition of a matrix that promotes ionization and desorption of important analyte molecules. This approach is known as matrix-enhanced secondary-ion mass spectrometry (ME-SIMS). We have investigated the effect of matrix acidity on molecular ion formation in three different biomolecules. A series of cinnamic acid based matrixes that vary in acidity was employed to systematically investigate the influence of matrix acidity on analyte ion formation. The positive ion signal for all three biomolecules showed a strong increase for more acidic matrixes. The most acidic matrix was then vapor-deposited onto mouse brain sections. This led to significant enhancement of lipid signals from the brain. This work indicates that proton donation plays an important role in the formation of molecular ions in ME-SIMS.

20.
J Am Soc Mass Spectrom ; 34(10): 2211-2221, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37713531

RESUMEN

Time-of-flight secondary ion mass spectrometry is one of the most promising techniques for label-free analysis of biomolecules with nanoscale spatial resolution. However, high-resolution imaging of larger biomolecules such as phospholipids and peptides is often hampered by low yields of molecular ions. Matrix-enhanced SIMS (ME-SIMS), in which an organic matrix is added to the sample, is one promising approach to enhancing the ion yield for biomolecules. Optimizing this approach has, however, been challenging because the processes involved in increasing the ion yield in ME-SIMS are not yet fully understood. In this work, the matrix α-cyano-4-hydroxycinnamic acid (HCCA) has been combined with cluster primary ion analysis to better understand the roles of proton donation and reduced fragmentation on lipid molecule ion yield. A model system consisting of 1:100 mol ratio dipalmitoylphosphatidylcholine (DPPC) in HCCA as well as an HCCA-coated mouse brain cryosection have been studied using a range of Bi and Ar cluster ions. Although the molecular ion yield increased with an increase in cluster ion size, the enhancement of the signals from intact lipid molecules decreased with an increase in cluster ion size for both the model system and the mouse brain. Additionally, in both systems, protonated molecular ions were significantly more enhanced than sodium and potassium cationized molecules for all of the primary ions utilized. For the model system, the DPPC molecular ion yield was increased by more than an order of magnitude for all of the primary ions studied, and fragmentation of DPPC was dramatically reduced. However, on the brain sample, even though the HCCA matrix reduced DPPC fragmentation for all of the primary ions studied, the matrix coating suppressed the ion yield for some lipids when the larger cluster primary ions were employed. This indicated insufficient migration of the lipids into the matrix coating, so that dilution by the matrix overpowered the enhancement effect. This study provides strong evidence that the HCCA matrix both enhances protonation and reduces fragmentation. For imaging applications, the ability of the analytes to migrate to the surface of the matrix coating is also a critical factor for useful signal enhancement. This work demonstrates that the HCCA matrix provides a softer desorption environment when using Bi cluster ions than that obtained using the large gas cluster ions studied alone, indicating the potential for improved high spatial resolution imaging with ME-SIMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA