Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(49): e2312039120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015847

RESUMEN

In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vß3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vß3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vß3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vß repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ratones , Humanos , Animales , Linfocitos T CD8-positivos , Ratones Endogámicos NOD , Virus del Tumor Mamario del Ratón , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T CD4-Positivos , Ratones Transgénicos
2.
J Immunol ; 210(7): 935-946, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762954

RESUMEN

IL-21 is essential for type 1 diabetes (T1D) development in the NOD mouse model. IL-21-expressing CD4 T cells are present in pancreatic islets where they contribute to T1D progression. However, little is known about their phenotype and differentiation states. To fill this gap, we generated, to our knowledge, a novel IL-21 reporter NOD strain to further characterize IL-21+ CD4 T cells in T1D. IL-21+ CD4 T cells accumulate in pancreatic islets and recognize ß cell Ags. Single-cell RNA sequencing revealed that CD4 T effector cells in islets actively express IL-21 and they are highly diabetogenic despite expressing multiple inhibitory molecules, including PD-1 and LAG3. Islet IL-21+ CD4 T cells segregate into four phenotypically and transcriptionally distinct differentiation states, that is, less differentiated early effectors, T follicular helper (Tfh)-like cells, and two Th1 subsets. Trajectory analysis predicts that early effectors differentiate into both Tfh-like and terminal Th1 cells. We further demonstrated that intrinsic IL-27 signaling controls the differentiation of islet IL-21+ CD4 T cells, contributing to their helper function. Collectively, our study reveals the heterogeneity of islet-infiltrating IL-21+ CD4 T cells and indicates that both Tfh-like and Th1 subsets produce IL-21 throughout their differentiation process, highlighting the important sources of IL-21 in T1D pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Diabetes Mellitus Tipo 1/genética , Linfocitos T CD4-Positivos/patología , Ratones Endogámicos NOD , Islotes Pancreáticos/patología
3.
Nature ; 574(7778): 372-377, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31619789

RESUMEN

Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.


Asunto(s)
Trastornos del Metabolismo de la Glucosa/genética , Habénula/metabolismo , Transducción de Señal , Tabaquismo/complicaciones , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , AMP Cíclico/metabolismo , Glucosa/metabolismo , Trastornos del Metabolismo de la Glucosa/metabolismo , Humanos , Ratones , Mutagénesis , Nicotina/metabolismo , Células PC12 , Páncreas/metabolismo , Ratas , Receptores Nicotínicos/metabolismo , Tabaquismo/genética , Tabaquismo/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética
4.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145289

RESUMEN

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Asunto(s)
Proteína Relacionada con Agouti , Factor 4 Similar a Kruppel , Neuronas , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Am J Pathol ; 193(10): 1548-1567, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419385

RESUMEN

ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.


Asunto(s)
Miopatías Nemalínicas , Animales , Ratones , Actinas/genética , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Mutación , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Proteómica
6.
Am J Pathol ; 193(10): 1528-1547, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422147

RESUMEN

Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.


Asunto(s)
Miopatías Nemalínicas , Animales , Humanos , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidad Muscular , Músculo Esquelético/metabolismo , Mutación , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Proteómica
7.
Physiol Genomics ; 55(10): 452-467, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458463

RESUMEN

We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.


Asunto(s)
Adiposidad , COVID-19 , Humanos , Ratas , Femenino , Animales , Ratones , Adiposidad/genética , Pandemias , COVID-19/genética , Control de Enfermedades Transmisibles , Obesidad/genética , Obesidad/metabolismo , Corticosterona , Dieta Alta en Grasa/efectos adversos , Fenotipo , Ratones Noqueados
8.
BMC Genomics ; 24(1): 371, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394518

RESUMEN

BACKGROUND: A common feature of single-cell RNA-seq (scRNA-seq) data is that the number of cells in a cell cluster may vary widely, ranging from a few dozen to several thousand. It is not clear whether scRNA-seq data from a small number of cells allow robust identification of differentially expressed genes (DEGs) with various characteristics. RESULTS: We addressed this question by performing scRNA-seq and poly(A)-dependent bulk RNA-seq in comparable aliquots of human induced pluripotent stem cells-derived, purified vascular endothelial and smooth muscle cells. We found that scRNA-seq data needed to have 2,000 or more cells in a cluster to identify the majority of DEGs that would show modest differences in a bulk RNA-seq analysis. On the other hand, clusters with as few as 50-100 cells may be sufficient for identifying the majority of DEGs that would have extremely small p values or transcript abundance greater than a few hundred transcripts per million in a bulk RNA-seq analysis. CONCLUSION: Findings of the current study provide a quantitative reference for designing studies that aim for identifying DEGs for specific cell clusters using scRNA-seq data and for interpreting results of such studies.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de Expresión Génica de una Sola Célula , RNA-Seq , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos
9.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L174-L189, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366533

RESUMEN

Pneumonia elicits the production of cytotoxic beta amyloid (Aß) that contributes to end-organ dysfunction, yet the mechanism(s) linking infection to activation of the amyloidogenic pathway that produces cytotoxic Aß is unknown. Here, we tested the hypothesis that gamma-secretase activating protein (GSAP), which contributes to the amyloidogenic pathway in the brain, promotes end-organ dysfunction following bacterial pneumonia. First-in-kind Gsap knockout rats were generated. Wild-type and knockout rats possessed similar body weights, organ weights, circulating blood cell counts, arterial blood gases, and cardiac indices at baseline. Intratracheal Pseudomonas aeruginosa infection caused acute lung injury and a hyperdynamic circulatory state. Whereas infection led to arterial hypoxemia in wild-type rats, the alveolar-capillary barrier integrity was preserved in Gsap knockout rats. Infection potentiated myocardial infarction following ischemia-reperfusion injury, and this potentiation was abolished in knockout rats. In the hippocampus, GSAP contributed to both pre- and postsynaptic neurotransmission, increasing the presynaptic action potential recruitment, decreasing neurotransmitter release probability, decreasing the postsynaptic response, and preventing postsynaptic hyperexcitability, resulting in greater early long-term potentiation but reduced late long-term potentiation. Infection abolished early and late long-term potentiation in wild-type rats, whereas the late long-term potentiation was partially preserved in Gsap knockout rats. Furthermore, hippocampi from knockout rats, and both the wild-type and knockout rats following infection, exhibited a GSAP-dependent increase in neurotransmitter release probability and postsynaptic hyperexcitability. These results elucidate an unappreciated role for GSAP in innate immunity and highlight the contribution of GSAP to end-organ dysfunction during infection.NEW & NOTEWORTHY Pneumonia is a common cause of end-organ dysfunction, both during and in the aftermath of infection. In particular, pneumonia is a common cause of lung injury, increased risk of myocardial infarction, and neurocognitive dysfunction, although the mechanisms responsible for such increased risk are unknown. Here, we reveal that gamma-secretase activating protein, which contributes to the amyloidogenic pathway, is important for end-organ dysfunction following infection.


Asunto(s)
Enfermedad de Alzheimer , Neumonía Bacteriana , Ratas , Animales , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Insuficiencia Multiorgánica , Péptidos beta-Amiloides/metabolismo , Neurotransmisores
10.
J Cardiovasc Pharmacol ; 82(6): 445-457, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37643020

RESUMEN

ABSTRACT: The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFß1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Hipertensión , Insuficiencia Renal Crónica , Ratas , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Estreptozocina/metabolismo , Ratas Endogámicas Dahl , Hipertensión/metabolismo , Riñón , Proteinuria/genética , Proteinuria/metabolismo , Insuficiencia Renal Crónica/complicaciones , Fibrosis , Presión Sanguínea , Cloruro de Sodio Dietético , Diabetes Mellitus/metabolismo
11.
Physiol Genomics ; 54(7): 231-241, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503009

RESUMEN

Hypertension (HTN) is a complex disease influenced by heritable genetic elements and environmental interactions. Dietary salt is among the most influential modifiable factors contributing to increased blood pressure (BP). It is well established that men and women develop BP impairment in different patterns and a recent emphasis has been placed on identifying mechanisms leading to the differences observed between the sexes in HTN development. The current work reported here builds on an extensive genetic mapping experiment that sought to identify genetic determinants of salt-sensitive (SS) HTN using the Dahl SS rat. BTG antiproliferation factor 2 (Btg2) was previously identified by our group as a candidate gene contributing to SS HTN in female rats. In the current study, Btg2 was mutated using transcription activator-like effector nuclease (TALEN)-targeted gene disruption on the SSBN congenic rat background. The Btg2 mutated rats exhibited impaired BP and proteinuria responses to a high-salt diet compared with wild-type rats. Differences in body weight, mutant pup viability, skeletal morphology, and adult nephron density suggest a potential role for Btg2 in developmental signaling pathways. Subsequent cell cycle gene expression assessment provides several additional signaling pathways that Btg2 may function through during salt handling in the kidney. The expression analysis also identified several potential upstream targets that can be explored to further isolate therapeutic approaches for SS HTN.


Asunto(s)
Hipertensión , Proteínas Inmediatas-Precoces , Animales , Presión Sanguínea/genética , Femenino , Humanos , Hipertensión/tratamiento farmacológico , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/uso terapéutico , Riñón/metabolismo , Mutación/genética , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/uso terapéutico
12.
Mol Psychiatry ; 26(6): 1909-1927, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144356

RESUMEN

Measuring animal behavior in the context of experimental manipulation is critical for modeling, and understanding neuropsychiatric disease. Prepulse inhibition of the acoustic startle response (PPI) is a behavioral phenomenon studied extensively for this purpose, but the results of PPI studies are often inconsistent. As a result, the utility of this phenomenon remains uncertain. Here, we deconstruct the phenomenon of PPI and confirm several limitations of the methodology traditionally utilized to describe PPI, including that the underlying startle response has a non-Gaussian distribution, and that the traditional PPI metric changes with different stimuli. We then develop a novel model that reveals PPI to be a combination of the previously appreciated scaling of the startle response, as well as a scaling of sound processing. Using our model, we find no evidence for differences in PPI in a rat model of Fragile-X Syndrome (FXS) compared with wild-type controls. These results in the rat provide a reliable methodology that could be used to clarify inconsistent PPI results in mice and humans. In contrast, we find robust differences between wild-type male and female rats. Our model allows us to understand the nature of these differences, and we find that both the startle-scaling and sound-scaling components of PPI are a function of the baseline startle response. Males and females differ specifically in the startle-scaling, but not the sound-scaling, component of PPI. These findings establish a robust experimental and analytical approach that has the potential to provide a consistent biomarker of brain function.


Asunto(s)
Síndrome del Cromosoma X Frágil , Inhibición Prepulso , Estimulación Acústica , Acústica , Animales , Femenino , Masculino , Ratones , Ratas , Reflejo de Sobresalto
13.
J Immunol ; 204(11): 2887-2899, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32295876

RESUMEN

CD137 modulates type 1 diabetes (T1D) progression in NOD mice. We previously showed that CD137 expression in CD4 T cells inhibits T1D, but its expression in CD8 T cells promotes disease development by intrinsically enhancing the accumulation of ß-cell-autoreactive CD8 T cells. CD137 is expressed on a subset of FOXP3+ regulatory CD4 T cells (Tregs), and CD137+ Tregs are the main source of soluble CD137. Soluble CD137 suppresses T cells in vitro by binding to the CD137 ligand (CD137L) upregulated on activated T cells. To further study how the opposing functions of CD137 are regulated, we successfully targeted Tnfsf9 (encoding CD137L) in NOD mice using the CRISPR/Cas9 system (designated NOD.Tnfsf9 -/-). Relative to wild-type NOD mice, T1D development in the NOD.Tnfsf9 -/- strain was significantly delayed, and mice developed less insulitis and had reduced frequencies of ß-cell-autoreactive CD8 T cells. Bone marrow chimera experiments showed that CD137L-deficient hematopoietic cells were able to confer T1D resistance. Adoptive T cell transfer experiments showed that CD137L deficiency on myeloid APCs was associated with T1D suppression. Conversely, lack of CD137L on T cells enhanced their diabetogenic activity. Furthermore, neither CD137 nor CD137L was required for the development and homeostasis of FOXP3+ Tregs. However, CD137 was critical for the in vivo T1D-suppressive activity of FOXP3+ Tregs, suggesting that the interaction between CD137 and CD137L regulates their function. Collectively, our results provide new insights into the complex roles of CD137-CD137L interaction in T1D.


Asunto(s)
Ligando 4-1BB/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Linfocitos T Reguladores/metabolismo , Ligando 4-1BB/genética , Animales , Antígenos CD4/metabolismo , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Humanos , Tolerancia Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Transducción de Señal , Linfocitos T Reguladores/inmunología , Quimera por Trasplante , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
14.
J Am Soc Nephrol ; 31(7): 1539-1554, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32487559

RESUMEN

BACKGROUND: Aberrant microRNA (miRNA) expression affects biologic processes and downstream genes that are crucial to CKD initiation or progression. The miRNA miR-204-5p is highly expressed in the kidney but whether miR-204-5p plays any role in the development of chronic renal injury is unknown. METHODS: We used real-time PCR to determine levels of miR-204 in human kidney biopsies and animal models. We generated Mir204 knockout mice and used locked nucleic acid-modified anti-miR to knock down miR-204-5p in mice and rats. We used a number of physiologic, histologic, and molecular techniques to analyze the potential role of miR-204-5p in three models of renal injury. RESULTS: Kidneys of patients with hypertension, hypertensive nephrosclerosis, or diabetic nephropathy exhibited a significant decrease in miR-204-5p compared with controls. Dahl salt-sensitive rats displayed lower levels of renal miR-204-5p compared with partially protected congenic SS.13BN26 rats. Administering anti-miR-204-5p to SS.13BN26 rats exacerbated interlobular artery thickening and renal interstitial fibrosis. In a mouse model of hypertensive renal injury induced by uninephrectomy, angiotensin II, and a high-salt diet, Mir204 gene knockout significantly exacerbated albuminuria, renal interstitial fibrosis, and interlobular artery thickening, despite attenuation of hypertension. In diabetic db/db mice, administering anti-miR-204-5p exacerbated albuminuria and cortical fibrosis without influencing blood glucose levels. In all three models, inhibiting miR-204-5p or deleting Mir204 led to upregulation of protein tyrosine phosphatase SHP2, a target gene of miR-204-5p, and increased phosphorylation of signal transducer and activator of transcription 3, or STAT3, which is an injury-promoting effector of SHP2. CONCLUSIONS: These findings indicate that the highly expressed miR-204-5p plays a prominent role in safeguarding the kidneys against common causes of chronic renal injury.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Riñón/patología , MicroARNs/metabolismo , Nefroesclerosis/metabolismo , Adulto , Albuminuria/genética , Animales , Arterias/patología , Presión Sanguínea/efectos de los fármacos , Nefropatías Diabéticas/patología , Femenino , Fibrosis , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión/complicaciones , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Persona de Mediana Edad , Nefroesclerosis/etiología , Nefroesclerosis/patología , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Cloruro de Sodio Dietético/administración & dosificación , Regulación hacia Arriba
15.
J Am Soc Nephrol ; 31(4): 687-700, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32029431

RESUMEN

BACKGROUND: The genes and mechanisms involved in the association between diabetes or hypertension and CKD risk are unclear. Previous studies have implicated a role for γ-adducin (ADD3), a cytoskeletal protein encoded by Add3. METHODS: We investigated renal vascular function in vitro and in vivo and the susceptibility to CKD in rats with wild-type or mutated Add3 and in genetically modified rats with overexpression or knockout of ADD3. We also studied glomeruli and primary renal vascular smooth muscle cells isolated from these rats. RESULTS: This study identified a K572Q mutation in ADD3 in fawn-hooded hypertensive (FHH) rats-a mutation previously reported in Milan normotensive (MNS) rats that also develop kidney disease. Using molecular dynamic simulations, we found that this mutation destabilizes a critical ADD3-ACTIN binding site. A reduction of ADD3 expression in membrane fractions prepared from the kidney and renal vascular smooth muscle cells of FHH rats was associated with the disruption of the F-actin cytoskeleton. Compared with renal vascular smooth muscle cells from Add3 transgenic rats, those from FHH rats had elevated membrane expression of BKα and BK channel current. FHH and Add3 knockout rats exhibited impairments in the myogenic response of afferent arterioles and in renal blood flow autoregulation, which were rescued in Add3 transgenic rats. We confirmed these findings in a genetic complementation study that involved crossing FHH and MNS rats that share the ADD3 mutation. Add3 transgenic rats showed attenuation of proteinuria, glomerular injury, and kidney fibrosis with aging and mineralocorticoid-induced hypertension. CONCLUSIONS: This is the first report that a mutation in ADD3 that alters ACTIN binding causes renal vascular dysfunction and promotes the susceptibility to kidney disease.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Hipertensión/complicaciones , Enfermedades Renales/etiología , Mutación/efectos de los fármacos , Circulación Renal/genética , Animales , Modelos Animales de Enfermedad , Homeostasis , Hipertensión/genética , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
16.
Int J Mol Sci ; 22(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063460

RESUMEN

The ubiquitously expressed adaptor protein Shc exists in three isoforms p46Shc, p52Shc, and p66Shc, which execute distinctly different actions in cells. The role of p46Shc is insufficiently studied, and the purpose of this study was to further investigate its functional significance. We developed unique rat mutants lacking p52Shc and p46Shc isoforms (p52Shc/46Shc-KO) and carried out histological analysis of skeletal and cardiac muscle of parental and genetically modified rats with impaired gait. p52Shc/46Shc-KO rats demonstrate severe functional abnormalities associated with impaired gait. Our analysis of p52Shc/46Shc-KO rat axons and myelin sheets in cross-sections of the sciatic nerve revealed the presence of significant anomalies. Based on the lack of skeletal muscle fiber atrophy and the presence of sciatic nerve abnormalities, we suggest that the impaired gait in p52Shc/46Shc-KO rats might be due to the sensory feedback from active muscle to the brain locomotor centers. The lack of dystrophin in some heart muscle fibers reflects damage due to dilated cardiomyopathy. Since rats with only p52Shc knockout do not display the phenotype of p52Shc/p46Shc-KO, abnormal locomotion is likely to be caused by p46Shc deletion. Our data suggest a previously unknown role of 46Shc actions and signaling in regulation of gait.


Asunto(s)
Cardiomiopatía Dilatada/genética , Marcha/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Animales , Cardiomiopatía Dilatada/patología , Técnicas de Inactivación de Genes , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Isoformas de Proteínas/genética , Ratas Transgénicas , Nervio Ciático/patología
17.
Am J Physiol Renal Physiol ; 319(5): F796-F808, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32924545

RESUMEN

To investigate T helper type 17 (Th17) cells in the setting of acute kidney injury, the gene encoding the master regulator of Th17 cell differentiation, that is, RAR-related orphan receptor-γ (RORγT), was mutated in Lewis rats using CRISPR/Cas9 technology. In response to 40 min of bilateral renal ischemia-reperfusion (I/R), RAR-related orphan receptor C (Rorc)-/- rats were resistant to injury relative to wild-type Rorc+/+ rats. This protection was associated with inhibition of IL-17 expression and reduced infiltration of CD4+ cells, CD8+ cells, B cells, and macrophages. To evaluate the effect of Th17 cells on repair, ischemia was increased to 50 min in Rorc-/- rats. This maneuver equalized the initial level of injury in Rorc-/- and Rorc+/+ rats 1 to 2 days post-I/R based on serum creatinine values. However, Rorc-/- rats, but not Rorc+/+ rats, failed to successfully recover renal function and had high mortality by 4 days post-I/R. Histological assessment of kidney tubules showed evidence of repair by day 4 post-I/R in Rorc+/+ rats but persistent necrosis and elevated cell proliferation in Rorc-/- rats. Adoptive transfer of CD4+ cells from the spleen of Rorc+/+ rats or supplementation of exogenous rIL-17 by an osmotic minipump improved renal function and survival of Rorc-/- rats following 50 min of I/R. This was associated with a relative decrease in the number of M1-type macrophages and a relative increase in the percentage of T regulatory cells. Taken together, these data suggest that Th17 cells have both a deleterious and a beneficial role in kidney injury and recovery, contributing to early postischemic injury and inflammation but also possibly being critical in the resolution of inflammation during kidney repair.


Asunto(s)
Riñón/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Daño por Reperfusión/metabolismo , Linfocitos T Reguladores/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Inflamación/metabolismo , Isquemia/metabolismo , Mutación/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Ratas , Ratas Endogámicas Lew , Recuperación de la Función , Daño por Reperfusión/patología , Células Th17
18.
Am J Physiol Heart Circ Physiol ; 319(2): H349-H358, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32589443

RESUMEN

Here, we report the generation of a Cre-recombinase (iCre) transgenic rat, where iCre is driven using a vascular endothelial-cadherin (CDH5) promoter. The CDH5 promoter was cloned from rat pulmonary microvascular endothelial cells and demonstrated ~60% similarity to the murine counterpart. The cloned rat promoter was 2,508 bp, it extended 79 bp beyond the transcription start site, and it was 22,923 bp upstream of the translation start site. The novel promoter was cloned upstream of codon-optimized iCre and subcloned into a Sleeping Beauty transposon vector for transpositional transgenesis in Sprague-Dawley rats. Transgenic founders were generated and selected for iCre expression. Crossing the CDH5-iCre rat with a tdTomato reporter rat resulted in progeny displaying endothelium-restricted fluorescence. tdTomato fluorescence was prominent in major arteries and veins, and it was similar in males and females. Quantitative analysis of the carotid artery and the jugular vein revealed that, on average, more than 50% of the vascular surface area exhibited strong fluorescence. tdTomato fluorescence was observed in the circulations of every tissue tested. The microcirculation in all tissues tested displayed homogenous fluorescence. Fluorescence was examined across young (6-7.5 mo), middle (14-16.5 mo), and old age (17-19.5 mo) groups. Although tdTomato fluorescence was seen in middle- and old-age animals, the intensity of the fluorescence was significantly reduced compared with that seen in the young rats. Thus, this endothelium-restricted transgenic rat offers a novel platform to test endothelial microheterogeneity within all vascular segments, and it provides exceptional resolution of endothelium within-organ microcirculation for application to translational disease models.NEW & NOTEWORTHY The use of transgenic mice has been instrumental in advancing molecular insight of physiological processes, yet these models oftentimes do not faithfully recapitulate human physiology and pathophysiology. Rat models better replicate some human conditions, like Group 1 pulmonary arterial hypertension. Here, we report the development of an endothelial cell-restricted transgenic reporter rat that has broad application to vascular biology. This first-in-kind model offers exceptional endothelium-restricted tdTomato expression, in both conduit vessels and the microcirculations of organs.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Células Endoteliales/metabolismo , Genes Reporteros , Integrasas/genética , Proteínas Luminiscentes/genética , Regiones Promotoras Genéticas , Factores de Edad , Animales , Femenino , Regulación de la Expresión Génica , Integrasas/metabolismo , Proteínas Luminiscentes/biosíntesis , Masculino , Microcirculación , Ratas Sprague-Dawley , Ratas Transgénicas , Distribución Tisular , Transposasas/genética , Transposasas/metabolismo , Proteína Fluorescente Roja
19.
FASEB J ; 33(8): 9334-9349, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31120771

RESUMEN

Methyl-donor deficiency is a risk factor for neurodegenerative diseases. Dietary deficiency of the methyl-donors methionine and choline [methionine-choline-deficient (MCD) diet] is a well-established model of nonalcoholic steatohepatitis (NASH), yet brain metabolism has not been studied in this model. We hypothesized that supplemental betaine would protect both the liver and brain in this model and that any benefit to the brain would be due to improved liver metabolism because betaine is a methyl-donor in liver methylation but is not metabolically active in the brain. We fed male Sprague-Dawley rats a control diet, MCD diet, or betaine-supplemented MCD (MCD+B) diet for 8 wk and collected blood and tissue. As expected, betaine prevented MCD diet-induced NASH. However, contrary to our prediction, it did not appear to do so by stimulating methylation; the MCD+B diet worsened hyperhomocysteinemia and depressed liver methylation potential 8-fold compared with the MCD diet. Instead, it significantly increased the expression of genes involved in ß-oxidation: fibroblast growth factor 21 and peroxisome proliferator-activated receptor α. In contrast to that of the liver, brain methylation potential was unaffected by diet. Nevertheless, several phospholipid (PL) subclasses involved in stabilizing brain membranes were decreased by the MCD diet, and these improved modestly with betaine. The protective effect of betaine is likely due to the stimulation of ß-oxidation in liver and the effects on PL metabolism in brain.-Abu Ahmad, N., Raizman, M., Weizmann, N., Wasek, B., Arning, E., Bottiglieri, T., Tirosh, O., Troen, A. M. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline-deficient rats.


Asunto(s)
Betaína/uso terapéutico , Deficiencia de Colina/tratamiento farmacológico , Deficiencia de Colina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Metionina/deficiencia , Metionina/metabolismo , Fosfolípidos/metabolismo , Animales , Western Blotting , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley
20.
Immunity ; 35(5): 681-93, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22101157

RESUMEN

T cell receptor (TCR) engagement of peptide-major histocompatibility complex (pMHC) is essential to adaptive immunity, but it is unknown whether TCR signaling responses are influenced by the binding topology of the TCR-peptide-MHC complex. We developed yeast-displayed pMHC libraries that enabled us to identify new peptide sequences reactive with a single TCR. Structural analysis showed that four peptides bound to the TCR with distinct 3D and 2D affinities using entirely different binding chemistries. Three of the peptides that shared a common docking mode, where key TCR-MHC germline interactions are preserved, induced TCR signaling. The fourth peptide failed to induce signaling and was recognized in a substantially different TCR-MHC binding mode that apparently exceeded geometric tolerances compatible with signaling. We suggest that the stereotypical TCR-MHC docking paradigm evolved from productive signaling geometries and that TCR signaling can be modulated by peptides that are recognized in alternative TCR-pMHC binding orientations.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Péptidos/química , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Secuencias de Aminoácidos/inmunología , Secuencia de Aminoácidos , Animales , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Humanos , Activación de Linfocitos/inmunología , Ratones , Modelos Moleculares , Biblioteca de Péptidos , Péptidos/metabolismo , Unión Proteica/inmunología , Conformación Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Reproducibilidad de los Resultados , Alineación de Secuencia , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA