Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Platelets ; 34(1): 2264978, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37933490

RESUMEN

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , ARN Viral , SARS-CoV-2 , Plaquetas/ultraestructura , Orgánulos
2.
Platelets ; 32(1): 97-104, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-32000578

RESUMEN

The canalicular system (CS) has been defined as: 1) an inward, invaginated membrane connector that supports entry into and exit from the platelet; 2) a static structure stable during platelet isolation; and 3) the major source of plasma membrane (PM) for surface area expansion during activation. Recent analysis from STEM tomography and serial block face electron microscopy has challenged the relative importance of CS as the route for granule secretion. Here, We used 3D ultrastructural imaging to reexamine the CS in mouse platelets by generating high-resolution 3D reconstructions to test assumptions 2 and 3. Qualitative and quantitative analysis of whole platelet reconstructions, obtained from immediately fixed or washed platelets fixed post-washing, indicated that CS, even in the presence of activation inhibitors, reorganized during platelet isolation to generate a more interconnected network. Further, CS redistribution into the PM at different times, post-activation, appeared to account for only about half the PM expansion seen in thrombin-activated platelets, in vitro, suggesting that CS reorganization is not sufficient to serve as a dominant membrane reservoir for activated platelets. In sum, our analysis highlights the need to revisit past assumptions about the platelet CS to better understand how this membrane system contributes to platelet function.


Asunto(s)
Imagenología Tridimensional/métodos , Activación Plaquetaria/fisiología , Animales , Humanos , Ratones
3.
Platelets ; 32(5): 608-617, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32815431

RESUMEN

Mice and mouse platelets are major experimental models for hemostasis and thrombosis; however, important physiological data from this model has received little to no quantitative, 3D ultrastructural analysis. We used state-of-the-art, serial block imaging scanning electron microscopy (SBF-SEM, nominal Z-step size was 35 nm) to image resting platelets from C57BL/6 mice. α-Granules were identified morphologically and rendered in 3D space. The quantitative analysis revealed that mouse α-granules typically had a variable, elongated, rod shape, different from the round/ovoid shape of human α-granules. This variation in length was confirmed qualitatively by higher-resolution, focused ion beam (FIB) SEM at a nominal 5 nm Z-step size. The unexpected α-granule shape raises novel questions regarding α-granule biogenesis and dynamics. Does the variation arise at the level of the megakaryocyte and α-granule biogenesis or from differences in α-granule dynamics and organelle fusion/fission events within circulating platelets? Further quantitative analysis revealed that the two major organelles in circulating platelets, α-granules and mitochondria, displayed a stronger linear relationship between organelle number/volume and platelet size, i.e., a scaling in number and volume to platelet size, than found in human platelets suggestive of a tighter mechanistic regulation of their inclusion during platelet biogenesis. In conclusion, the overall spatial arrangement of organelles within mouse platelets was similar to that of resting human platelets, with mouse α-granules clustered closely together with little space for interdigitation of other organelles.


Asunto(s)
Plaquetas/ultraestructura , Imagenología Tridimensional/métodos , Animales , Humanos , Ratones
4.
J Am Chem Soc ; 141(37): 14687-14698, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31466436

RESUMEN

Phototheranostics refers to advanced photonics-mediated theranostic methods for cancer and includes imaging-guided photothermal/chemotherapy, photothermal/photodynamic therapy, and photodynamic/chemotherapy, which are expected to provide a paradigm of modern precision medicine. In this regard, various phototheranostic drug delivery systems with excellent photonic performance, controlled drug delivery/release, and precise photoimaging guidance have been developed. In this study, we reported a special "in situ framework growth" method to synthesize novel phototheranostic hollow mesoporous nanoparticles by ingenious hybridization of perylene diimide (PDI) within the framework of small-sized hollow mesoporous organosilica (HMO). The marriage of PDI and HMO endowed the phototheranostic silica nanoparticles (HMPDINs) with largely amplified fluorescence and photoacoustic signals, which can be used for enhanced fluorescence and photoacoustic imaging. The organosilica shell can be chemically chelated with isotope 64Cu for positron emission tomography imaging. Moreover, in situ polymer growth was introduced in the hollow structure of the HMPDINs to produce thermosensitive polymer (TP) in the cavity of HMPDINs to increase the loading capacity and prevent unexpected leakage of the hydrophobic drug SN38. Furthermore, the framework-hybridized PDI generated heat under near-infrared laser irradiation to trigger the deformation of TP for controlled drug release in the tumor region. The fabricated hybrid nanomedicine with organic-inorganic characteristic not only increases the cancer theranostic efficacy but also offers an attractive solution for designing powerful theranostic platforms.


Asunto(s)
Imidas/química , Nanopartículas/química , Compuestos de Organosilicio/química , Perileno/química , Medicina de Precisión , Nanomedicina Teranóstica , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Polimerizacion , Porosidad , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Platelets ; 28(4): 400-408, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27753523

RESUMEN

Platelets are small, anucleate cell fragments that are central to hemostasis, thrombosis, and inflammation. They are derived from megakaryocytes from which they inherit their organelles. As platelets can synthesize proteins and contain many of the enzymes of the secretory pathway, one might expect all mature human platelets to contain a stacked Golgi apparatus, the central organelle of the secretory pathway. By thin section electron microscopy, stacked membranes resembling the stacked Golgi compartment in megakaryocytes and other nucleated cells can be detected in both proplatelets and platelets. However, the incidence of such structures is low and whether each and every platelet contains such a structure remains an open question. By single-label, immunofluorescence staining, Golgi glycosyltransferases are found within each platelet and map to scattered structures. Whether these structures are positive for marker proteins from multiple Golgi subcompartments remains unknown. Here, we have applied state-of-the-art techniques to probe the organization state of the Golgi apparatus in resting human platelets. By the whole cell volume technique of serial-block-face scanning electron microscopy (SBF-SEM), we failed to observe stacked, Golgi-like structures in any of the 65 platelets scored. When antibodies directed against Golgi proteins were tested against HeLa cells, labeling was restricted to an elongated juxtanuclear ribbon characteristic of a stacked Golgi apparatus. By multi-label immunofluorescence microscopy, we found that each and every resting human platelet was positive for cis, trans, and trans Golgi network (TGN) proteins. However, in each case, the proteins were found in small puncta scattered about the platelet. At the resolution of deconvolved, widefield fluorescence microscopy, these proteins had limited tendency to map adjacent to one another. When the results of 3D structured illumination microscopy (3D SIM), a super resolution technique, were scored quantitatively, the Golgi marker proteins failed to map together indicating at the protein level considerable degeneration of the platelet Golgi apparatus relative to the layered stack as seen in the megakaryocyte. In conclusion, we suggest that these results have important implications for organelle structure/function relationships in the mature platelet and the extent to which Golgi apparatus organization is maintained in platelets. Our results suggest that Golgi proteins in circulating platelets are present within a series of scattered, separated structures. As separate elements, selective sets of Golgi enzymes or sugar nucleotides could be secreted during platelet activation. The establishment of the functional importance, if any, of these scattered structures in sequential protein modification in circulating platelets will require further research.


Asunto(s)
Plaquetas/metabolismo , Aparato de Golgi/metabolismo , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Técnicas de Cultivo de Célula , Células HeLa , Humanos , Orgánulos
6.
Nanomedicine ; 13(2): 503-513, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27520728

RESUMEN

Stem cell-based therapies have become a major focus in regenerative medicine and to treat diseases. A straightforward approach combining three drugs, heparin (H), protamine (P) with ferumoxytol (F) in the form of nanocomplexes (NCs) effectively labeled stem cells for cellular MRI. We report on the physicochemical characteristics for optimizing the H, P, and F components in different ratios, and mixing sequences, producing NCs that varied in hydrodynamic size. NC size depended on the order in which drugs were mixed in media. Electron microscopy of HPF or FHP showed that F was located on the surface of spheroidal shaped HP complexes. Human stem cells incubated with FHP NCs resulted in a significantly greater iron concentration per cell compared to that found in HPF NCs with the same concentration of F. These results indicate that FHP could be useful for labeling stem cells in translational studies in the clinic.


Asunto(s)
Óxido Ferrosoférrico , Heparina , Protaminas , Células Madre , Rastreo Celular , Humanos , Imagen por Resonancia Magnética , Magnetismo , Nanopartículas , Trasplante de Células Madre
7.
Cells Dev ; 177: 203898, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38103869

RESUMEN

The basement membrane (BM) demarcating epithelial tissues undergoes rapid expansion to accommodate tissue growth and morphogenesis during embryonic development. To facilitate the secretion of bulky BM proteins, their mRNAs are polarized basally in the follicle epithelial cells of the Drosophila egg chamber to position their sites of production close to their deposition. In contrast, we observed the apical rather than basal polarization of all major BM mRNAs in the outer epithelial cells adjacent to the BM of mouse embryonic salivary glands using single-molecule RNA fluorescence in situ hybridization (smFISH). Moreover, electron microscopy and immunofluorescence revealed apical polarization of both the endoplasmic reticulum (ER) and Golgi apparatus, indicating that the site of BM component production was opposite to the site of deposition. At the apical side, BM mRNAs colocalized with ER, suggesting they may be co-translationally tethered. After microtubule inhibition, the BM mRNAs and ER became uniformly distributed rather than apically polarized, but they remained unchanged after inhibiting myosin II, ROCK, or F-actin, or after enzymatic disruption of the BM. Because Rab6 is generally required for Golgi-to-plasma membrane trafficking of BM components, we used lentivirus to express an mScarlet-tagged Rab6a in salivary gland epithelial cultures to visualize vesicle trafficking dynamics. We observed extensive bidirectional vesicle movements between Golgi at the apical side and the basal plasma membrane adjacent to the BM. Moreover, we showed that these vesicle movements depend on the microtubule motor kinesin-1 because very few vesicles remained motile after treatment with kinesore to compete for cargo-binding sites on kinesin-1. Overall, our work highlights the diverse strategies that different organisms use to secrete bulky matrix proteins: while Drosophila follicle epithelial cells strategically place their sites of BM protein production close to their deposition, mouse embryonic epithelial cells place their sites of production at the opposite end. Instead of spatial proximity, they use the microtubule cytoskeleton to mediate this organization as well as for the apical-to-basal transport of BM proteins.


Asunto(s)
Cinesinas , Microtúbulos , Animales , Ratones , Membrana Basal/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hibridación Fluorescente in Situ , Microtúbulos/genética , Células Epiteliales/metabolismo , Drosophila/genética , Drosophila/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo
8.
J Struct Biol ; 181(2): 162-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23246783

RESUMEN

We examined the structure and biomineralization of prismatic magnetosomes in the magnetotactic marine vibrio Magnetovibrio blakemorei strain MV-1 and a non-magnetotactic mutant derived from it, using a combination of cryo-electron tomography and freeze-fracture. The vesicles enveloping the Magnetovibrio magnetosomes were elongated and detached from the cell membrane. Magnetosome crystal formation appeared to be initiated at a nucleation site on the membrane inner surface. Interestingly, while scattered filaments were observed in the surrounding cytoplasm, their association with the magnetosome chains could not be unequivocally established. Our data suggest fundamental differences between prismatic and octahedral magnetosomes in their mechanisms of nucleation and crystal growth as well as in their structural relationships with the cytoplasm and plasma membrane.


Asunto(s)
Cristalización/métodos , Magnetosomas/fisiología , Magnetosomas/ultraestructura , Rhodospirillaceae/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Técnica de Fractura por Congelación
9.
J Am Chem Soc ; 135(21): 7974-84, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23642094

RESUMEN

Amphiphilic plasmonic micelle-like nanoparticles (APMNs) composed of gold nanoparticles (AuNPs) and amphiphilic block copolymers (BCPs) structurally resemble polymer micelles with well-defined architectures and chemistry. The APMNs can be potentially considered as a prototype for modeling a higher-level self-assembly of micelles. The understanding of such secondary self-assembly is of particular importance for the bottom-up design of new hierarchical nanostructures. This article describes the self-assembly, modeling, and applications of APMN assemblies in selective solvents. In a mixture of water/tetrahydrofuran, APMNs assembled into various superstructures, including unimolecular micelles, clusters with controlled number of APMNs, and vesicles, depending on the lengths of polymer tethers and the sizes of AuNP cores. The delicate interplay of entropy and enthalpy contributions to the overall free energy associated with the assembly process, which is strongly dependent on the spherical architecture of APMNs, yields an assembly diagram that is different from the assembly of linear BCPs. Our experimental and computational studies suggested that the morphologies of assemblies were largely determined by the deformability of the effective nanoparticles (that is, nanoparticles together with tethered chains as a whole). The assemblies of APMNs resulted in strong absorption in near-infrared range due to the remarkable plasmonic coupling of Au cores, thus facilitating their biomedical applications in bioimaging and photothermal therapy of cancer.


Asunto(s)
Micelas , Nanopartículas , Solventes/química , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
10.
Proc Natl Acad Sci U S A ; 107(8): 3834-9, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133720

RESUMEN

Recent advances in high-field MRI have dramatically improved the visualization of human brain anatomy in vivo. Most notably, in cortical gray matter, strong contrast variations have been observed that appear to reflect the local laminar architecture. This contrast has been attributed to subtle variations in the magnetic properties of brain tissue, possibly reflecting varying iron and myelin content. To establish the origin of this contrast, MRI data from postmortem brain samples were compared with electron microscopy and histological staining for iron and myelin. The results show that iron is distributed over laminae in a pattern that is suggestive of each region's myeloarchitecture and forms the dominant source of the observed MRI contrast.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Ferritinas/metabolismo , Hierro/metabolismo , Imagen por Resonancia Magnética , Adulto , Corteza Cerebral/ultraestructura , Femenino , Ferritinas/química , Humanos , Hierro/química , Masculino , Persona de Mediana Edad , Vaina de Mielina/química , Vaina de Mielina/metabolismo
11.
Res Pract Thromb Haemost ; 7(2): 100058, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36865905

RESUMEN

Background: Puncture wounding is a longstanding challenge to human health for which understanding is limited, in part, by a lack of detailed morphological data on how the circulating platelet capture to the vessel matrix leads to sustained, self-limiting platelet accumulation. Objectives: The objective of this study was to produce a paradigm for self-limiting thrombus growth in a mouse jugular vein model. Methods: Data mining of advanced electron microscopy images was performed from authors' laboratories. Results: Wide-area transmission electron mcrographs revealed initial platelet capture to the exposed adventitia resulted in localized patches of degranulated, procoagulant-like platelets. Platelet activation to a procoagulant state was sensitive to dabigatran, a direct-acting PAR receptor inhibitor, but not to cangrelor, a P2Y12 receptor inhibitor. Subsequent thrombus growth was sensitive to both cangrelor and dabigatran and sustained by the capture of discoid platelet strings first to collagen-anchored platelets and later to loosely adherent peripheral platelets. Spatial examination indicated that staged platelet activation resulted in a discoid platelet tethering zone that was pushed progressively outward as platelets converted from one activation state to another. As thrombus growth slowed, discoid platelet recruitment became rare and loosely adherent intravascular platelets failed to convert to tightly adherent platelets. Conclusions: In summary, the data support a model that we term Capture and Activate, in which the initial high platelet activation is directly linked to the exposed adventitia, all subsequent tethering of discoid platelets is to loosely adherent platelets that convert to tightly adherent platelets, and self-limiting, intravascular platelet activation over time is the result of decreased signaling intensity.

12.
Nano Lett ; 11(2): 814-9, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21210706

RESUMEN

Nanomaterials provide large surface areas, relativeto their volumes, on which to load functions. One challenge, however, has been to achieve precise control in loading multiple functionalities. Traditional bioconjugation techniques, which randomly target the surface functional groups of nanomaterials, have been found increasingly inadequate for such control, which is a drawback that may substantially slow down or prohibit the translational efforts. In the current study, we evaluated ferritin nanocages as candidate nanoplatforms for multifunctional loading. Ferritin nanocages can be either genetically or chemically modified to impart functionalities to their surfaces, and metal cations can be encapsulated in their interiors by association with metal binding sites. Moreover, different types of ferritin nanocages can be disassembled under acidic condition and reassembled at pH of 7.4, providing a facile way to achieve function hybridization. We were able to use combinations of these unique properties to produce a number of multifunctional ferritin nanostructures with precise control of their composition. We then studied these nanoparticles, both in vitro and in vivo, to evaluate their potential suitability as multimodality imaging probes. A good tumor targeting profile was observed, which was attributable to both the enhanced permeability and retention (EPR) effect and biovector mediated targeting. This, in combination with the generalizability of the function loading techniques, promises ferritin particles as a powerful nanoplatfom in the era of nanomedicine.


Asunto(s)
Ferritinas/química , Imagen Molecular/métodos , Nanocápsulas/química , Neoplasias Experimentales/patología , Técnica de Sustracción , Animales , Humanos , Nanocápsulas/ultraestructura
13.
Front Synaptic Neurosci ; 14: 1004154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186623

RESUMEN

A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.

14.
Sci Rep ; 11(1): 23343, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857844

RESUMEN

Placozoa is a phylum of non-bilaterian marine animals. These small, flat organisms adhere to the substrate via their densely ciliated ventral epithelium, which mediates mucociliary locomotion and nutrient uptake. They have only six morphological cell types, including one, fiber cells, for which functional data is lacking. Fiber cells are non-epithelial cells with multiple processes. We used electron and light microscopic approaches to unravel the roles of fiber cells in Trichoplax adhaerens, a representative member of the phylum. Three-dimensional reconstructions of serial sections of Trichoplax showed that each fiber cell is in contact with several other cells. Examination of fiber cells in thin sections and observations of live dissociated fiber cells demonstrated that they phagocytose cell debris and bacteria. In situ hybridization confirmed that fiber cells express genes involved in phagocytic activity. Fiber cells also are involved in wound healing as evidenced from microsurgery experiments. Based on these observations we conclude that fiber cells are multi-purpose macrophage-like cells. Macrophage-like cells have been described in Porifera, Ctenophora, and Cnidaria and are widespread among Bilateria, but our study is the first to show that Placozoa possesses this cell type. The phylogenetic distribution of macrophage-like cells suggests that they appeared early in metazoan evolution.


Asunto(s)
Evolución Biológica , Citofagocitosis , Inmunidad Innata , Placozoa/inmunología , Rhodophyta/inmunología , Cicatrización de Heridas , Animales , Filogenia
15.
iScience ; 24(8): 102901, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34401678

RESUMEN

In the finely regulated process of mammalian erythropoiesis, the path of the labile iron pool into mitochondria for heme production is not well understood. Existing models for erythropoiesis do not include a central role for the ubiquitous iron storage protein ferritin; one model proposes that incoming endosomal Fe3+ bound to transferrin enters the cytoplasm through an ion transporter after reduction to Fe2+ and is taken up into mitochondria through mitoferrin-1 transporter. Here, we apply a dual three-dimensional imaging and spectroscopic technique, based on scanned electron probes, to measure Fe3+ in ex vivo human hematopoietic stem cells. After seven days in culture, we observe cells displaying a highly specialized architecture with anchored clustering of mitochondria and massive accumulation of nanoparticles containing high iron concentrations localized to lysosomal storage depots, identified as ferritin. We hypothesize that lysosomal ferritin iron depots enable continued heme production after expulsion of most of the cellular machinery.

16.
Sci Rep ; 11(1): 2561, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510185

RESUMEN

Biologists who use electron microscopy (EM) images to build nanoscale 3D models of whole cells and their organelles have historically been limited to small numbers of cells and cellular features due to constraints in imaging and analysis. This has been a major factor limiting insight into the complex variability of cellular environments. Modern EM can produce gigavoxel image volumes containing large numbers of cells, but accurate manual segmentation of image features is slow and limits the creation of cell models. Segmentation algorithms based on convolutional neural networks can process large volumes quickly, but achieving EM task accuracy goals often challenges current techniques. Here, we define dense cellular segmentation as a multiclass semantic segmentation task for modeling cells and large numbers of their organelles, and give an example in human blood platelets. We present an algorithm using novel hybrid 2D-3D segmentation networks to produce dense cellular segmentations with accuracy levels that outperform baseline methods and approach those of human annotators. To our knowledge, this work represents the first published approach to automating the creation of cell models with this level of structural detail.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos , Imagenología Tridimensional , Aprendizaje Automático , Microscopía Electrónica
17.
Biomater Sci ; 9(7): 2584-2597, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33595023

RESUMEN

It is widely accepted that a small particle size and rough surface can enhance tumor tissue accumulation and tumor cellular uptake of nanoparticles, respectively. Herein, sub-50 nm urchin-inspired disulfide bond-bridged mesoporous organosilica nanoparticles (UMONs) featured with a spiky surface and glutathione (GSH)-responsive biodegradability were successfully synthesized by a facile one-pot biphasic synthesis strategy for enhanced cellular internalization and tumor accumulation. l-Arginine (LA) is encapsulated into the mesopores of UMONs, whose outer surface is capped with the gatekeeper of ultrasmall gold nanoparticles, i.e., UMONs-LA-Au. On the one hand, the mild acidity-activated uncapping of ultrasmall gold can realize a tumor microenvironment (TME)-responsive release of LA. On the other hand, the unique natural glucose oxidase (GOx)-mimicking catalytic activity of ultrasmall gold can catalyze the decomposition of intratumoral glucose to produce acidic hydrogen peroxide (H2O2) and gluconic acid. Remarkably, these products can not only further facilitate the release of LA, but also catalyze the LA-H2O2 reaction for an increased nitric oxide (NO) yield, which realizes synergistic catalysis-enhanced NO gas therapy for tumor eradication. The judiciously fabricated UMONs-LA-Au present a paradigm of TME-responsive nanoplatforms for both enhanced cellular uptake and tumor-specific precision cascaded therapy, which broadens the range of practical biomedical applications and holds a significant promise for the clinical translation of silica-based nanotheranostics.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro , Peróxido de Hidrógeno , Tamaño de la Partícula , Dióxido de Silicio
18.
Commun Biol ; 4(1): 1090, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531522

RESUMEN

Primary hemostasis results in a platelet-rich thrombus that has long been assumed to form a solid plug. Unexpectedly, our 3-dimensional (3D) electron microscopy of mouse jugular vein puncture wounds revealed that the resulting thrombi were structured about localized, nucleated platelet aggregates, pedestals and columns, that produced a vaulted thrombus capped by extravascular platelet adherence. Pedestal and column surfaces were lined by procoagulant platelets. Furthermore, early steps in thrombus assembly were sensitive to P2Y12 inhibition and late steps to thrombin inhibition. Based on these results, we propose a Cap and Build, puncture wound paradigm that should have translational implications for bleeding control and hemostasis.


Asunto(s)
Plaquetas/fisiología , Hemostasis/fisiología , Punciones/efectos adversos , Trombosis/fisiopatología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Trombosis/etiología
19.
Res Pract Thromb Haemost ; 4(1): 72-85, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31989087

RESUMEN

BACKGROUND: State-of-the-art 3-dimensional (3D) electron microscopy approaches provide a new standard for the visualization of human platelet ultrastructure. Application of these approaches to platelets rapidly fixed prior to purification to minimize activation should provide new insights into resting platelet ultrastructure. OBJECTIVES: Our goal was to determine the 3D organization of α-granules, dense granules, mitochondria, and canalicular system in resting human platelets and map their spatial relationships. METHODS: We used serial block face-scanning electron microscopy images to render the 3D ultrastructure of α-granules, dense granules, mitochondria, canalicular system, and plasma membrane for 30 human platelets, 10 each from 3 donors. α-Granule compositional data were assessed by sequential, serial section cryo-immunogold electron microscopy and by immunofluorescence (structured illumination microscopy). RESULTS AND CONCLUSIONS: α-Granule number correlated linearly with platelet size, while dense granule and mitochondria number had little correlation with platelet size. For all subcellular compartments, individual organelle parameters varied considerably and organelle volume fraction had little correlation with platelet size. Three-dimensional data from 30 platelets indicated only limited spatial intermixing of the different organelle classes. Interestingly, almost 70% of α-granules came within ≤35 nm of each other, a distance associated in other cell systems with protein-mediated contact sites. Size and shape analysis of the 1488 α-granules analyzed revealed no more variation than that expected for a Gaussian distribution. Protein distribution data indicated that all α-granules likely contained the same major set of proteins, albeit at varying amounts and varying distribution within the granule matrix.

20.
J Transl Med ; 7: 51, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19549317

RESUMEN

BACKGROUND: The existence of large pores in the blood-tumor barrier (BTB) of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state in vivo a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed in vivo the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site. METHODS: Generation 5 (G5) through generation 8 (G8) polyamidoamine dendrimers were labeled with gadolinium (Gd)-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized in vitro by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5) the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized in vivo over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps. RESULTS: The estimated diameters of Gd-G7 dendrimers were 11 +/- 1 nm and those of Gd-G8 dendrimers were 13 +/- 1 nm. The BTB of ectopic RG-2 gliomas was more permeable than the BTB of orthotopic RG-2 gliomas to all Gd-dendrimer generations except for Gd-G8. The BTB of both ectopic RG-2 gliomas and orthotopic RG-2 gliomas was not permeable to Gd-G8 dendrimers. CONCLUSION: The physiologic upper limit of pore size in the BTB of malignant solid tumor microvasculature is approximately 12 nanometers. In the physiologic state in vivo the luminal fibrous glycocalyx of the BTB of malignant brain tumor and peripheral tumors is the primary impediment to the effective transvascular transport of particles across the BTB of malignant solid tumor microvasculature independent of tumor host site. The higher permeability of malignant peripheral tumor microvasculature to macromolecules smaller than approximately 12 nm in diameter is attributable to the presence of a greater number of pores underlying the glycocalyx of the BTB of malignant peripheral tumor microvasculature.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Glioma/irrigación sanguínea , Glioma/patología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Medios de Contraste/farmacocinética , Dendrímeros/síntesis química , Dendrímeros/química , Dendrímeros/metabolismo , Extravasación de Materiales Terapéuticos y Diagnósticos , Gadolinio DTPA/farmacocinética , Semivida , Infusiones Intravenosas , Imagen por Resonancia Magnética , Masculino , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microvasos , Peso Molecular , Nanopartículas , Tamaño de la Partícula , Poliaminas/farmacocinética , Porosidad , Ratas , Ratas Endogámicas F344 , Coloración y Etiquetado , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA