Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Genet ; 70(1): 10, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083100

RESUMEN

The genus Staphylococcus encompasses a diverse array of bacteria with significant implications for human health, including disreputable pathogens such as Staphylococcus aureus and Staphylococcus epidermidis. Understanding the genetic composition and codon usage patterns of Staphylococcus species is crucial for unraveling their evolutionary dynamics, adaptive strategies, and pathogenic potential. In this study, we conducted a comprehensive analysis of codon usage patterns across 48 species within the Staphylococcus genus. Our findings uncovered variations in genomic G-C content across Staphylococcus species, impacting codon usage preferences, with a notable preference for A/T-rich codons observed in pathogenic strains. This preference for A/T-rich codons suggests an energy-saving strategy in pathogenic organisms. Analysis of dinucleotide pair expression patterns unveiled insights into genomic dynamics, with overrepresented codon pairs reflecting trends in dinucleotide expression across genomes. Additionally, a significant correlation between CAI and genomic G-C content underscored the intricate relationship between codon usage patterns and gene expression strategies. Amino acid usage analysis highlighted preferences for energetically cheaper amino acids, suggesting adaptive strategies promoting energy efficiency. This comprehensive analysis sheds light on the evolutionary dynamics and adaptive mechanisms employed by Staphylococcus species, providing valuable insights into their pathogenic potential and clinical implications. Understanding these genomic features is crucial for devising strategies to combat staphylococcal infections and improve public health outcomes.


Asunto(s)
Composición de Base , Uso de Codones , Genoma Bacteriano , Staphylococcus , Staphylococcus/genética , Evolución Molecular , Codón/genética , Genómica/métodos , Aminoácidos/genética , Filogenia
2.
AAPS PharmSciTech ; 25(3): 61, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485901

RESUMEN

Mesalamine is a first-line drug for the treatment of inflammatory bowel diseases. However, its premature release associated with marketed formulations leads to adverse effects like gastric trouble, vomiting, and diarrhoea. To minimize these side effects, colon-targeted drug delivery is essential. Besides conventional pharmacotherapy, bifidogenic probiotics with anti-inflammatory activity has been reported to elicit a significant impact on the remission of ulcerative colitis. Bifidogenic probiotics being acid-labile necessitate developing a gastro-resistant formulation for enhancing the delivery of viable cells to the colon. The present study was aimed at developing a fixed-dose unit dosage form of mucoadhesive hydrogel beads loaded with mesalamine and Bifidobacterium bifidum further encapsulated in Eudragit® capsules for the targeted drug delivery at colonic pH. The hydrogel beads were prepared by ionotropic gelation, with the effect of single and dual-crosslinking approaches on various formulation characteristics studied. Standard size 00 Eudragit® gastro-resistant capsules were prepared and the dried beads were filled inside the capsule shells. The formulation was then evaluated for various parameters, including physicochemical characterization, in vitro biocompatibility and anti-inflammatory activity. No interaction was observed between the drug and the polymers, as confirmed through FTIR, XRD, and DSC analysis. The mean particle size of the beads was ~ 457-485 µm. The optimized formulation showed a drug entrapment efficiency of 95.4 ± 2.58%. The Eudragit® capsule shells disintegrated in approximately 13 min at pH 7.4. The mucoadhesive hydrogel beads sustained the drug release above 18 h, with 50% of the drug released by the end of 12 h. The optimized formulation demonstrated significant (p < 0.05) gastro-resistance, biocompatibility, sustained drug release, cell viability, and anti-inflammatory activity.


Asunto(s)
Bifidobacterium bifidum , Mesalamina , Ácidos Polimetacrílicos , Hidrogeles/farmacología , Colon , Antiinflamatorios/farmacología
3.
ChemistryOpen ; : e202400147, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246226

RESUMEN

2,4-Thiazolidinedione derivatives represent nitrogen-containing heterocyclic compounds utilized in type 2 diabetes mellitus management. Recent advances in medicinal chemistry have unveiled diverse therapeutic potentials and structural modifications of these derivatives. This review delves into novel TZD derivatives, encompassing their synthesis, structure-activity relationships, and pharmacokinetic profiles. Various therapeutic potentials of TZDs are explored, including anticancer, antimicrobial, anti-inflammatory, antioxidant, anticonvulsant, antihyperlipidemic, anticorrosive, and antitubercular activities. Additionally, it addresses mitigating side effects associated with marketed TZD derivatives such as weight gain, oedema, fractures, and congestive heart failure in type 2 diabetes mellitus management. The review elaborates on in vivo, in vitro, and ex vivo studies supporting different biological activities, alongside predicting ADME and drug-likeness properties of TZDs. Computational studies are also integrated to elucidate binding modes and affinities of novel TZD derivatives. Furthermore, a plethora of novel TZD derivatives with varied and enhanced therapeutic potentials are presented, warranting further evaluation of their biological activities.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37365786

RESUMEN

BACKGROUND: Prostate cancer is one of the most prevalent cancers in men, leading to the second most common cause of death in men. Despite the availability of multiple treatments, the prevalence of prostate cancer remains high. Steroidal antagonists are associated with poor bioavailability and side effects, while non-steroidal antagonists show serious side effects, such as gynecomastia. Therefore, there is a need for a potential candidate for the treatment of prostate cancer with better bioavailability, good therapeutic effects, and minimal side effects. OBJECTIVE: This current research work focused on identifying a novel non-steroidal androgen receptor antagonist through computational tools, such as docking and in silico ADMET analysis. METHODS: Molecules were designed based on a literature survey, followed by molecular docking of all designed compounds and ADMET analysis of the hit compounds. RESULTS: A library of 600 non-steroidal derivatives (cis and trans) was designed, and molecular docking was performed in the active site of the androgen receptor (PDBID: 1Z95) using AutoDock Vina 1.5.6. Docking studies resulted in 15 potent hits, which were then subjected to ADME analysis using SwissADME. ADME analysis predicted three compounds (SK-79, SK-109, and SK-169) with the best ADME profile and better bioavailability. Toxicity studies using Protox-II were performed on the three best compounds (SK-79, SK-109, and SK-169), which predicted ideal toxicity for these lead compounds. CONCLUSION: This research work will provide ample opportunities to explore medicinal and computational research areas. It will facilitate the development of novel androgen receptor antagonists in future experimental studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA