Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(2): 313-328, 2014 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-24656405

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Piperidinas/farmacología , Quinolinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Muerte Celular/efectos de los fármacos , Xenoinjertos , Humanos , Hidroxiquinolinas/farmacología , MAP Quinasa Quinasa 4/metabolismo , Ratones , Trasplante de Neoplasias , Pinocitosis/efectos de los fármacos , Vacuolas/metabolismo , Pez Cebra
3.
J Neurosci ; 43(13): 2222-2241, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36868853

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed treatment for individuals experiencing major depressive disorder. The therapeutic mechanisms that take place before, during, or after SSRIs bind the serotonin transporter (SERT) are poorly understood, partially because no studies exist on the cellular and subcellular pharmacokinetic properties of SSRIs in living cells. We studied escitalopram and fluoxetine using new intensity-based, drug-sensing fluorescent reporters targeted to the plasma membrane, cytoplasm, or endoplasmic reticulum (ER) of cultured neurons and mammalian cell lines. We also used chemical detection of drug within cells and phospholipid membranes. The drugs attain equilibrium in neuronal cytoplasm and ER at approximately the same concentration as the externally applied solution, with time constants of a few s (escitalopram) or 200-300 s (fluoxetine). Simultaneously, the drugs accumulate within lipid membranes by ≥18-fold (escitalopram) or 180-fold (fluoxetine), and possibly by much larger factors. Both drugs leave cytoplasm, lumen, and membranes just as quickly during washout. We synthesized membrane-impermeant quaternary amine derivatives of the two SSRIs. The quaternary derivatives are substantially excluded from membrane, cytoplasm, and ER for >2.4 h. They inhibit SERT transport-associated currents sixfold or 11-fold less potently than the SSRIs (escitalopram or fluoxetine derivative, respectively), providing useful probes for distinguishing compartmentalized SSRI effects. Although our measurements are orders of magnitude faster than the therapeutic lag of SSRIs, these data suggest that SSRI-SERT interactions within organelles or membranes may play roles during either the therapeutic effects or the antidepressant discontinuation syndrome.SIGNIFICANCE STATEMENT Selective serotonin reuptake inhibitors stabilize mood in several disorders. In general, these drugs bind to SERT, which clears serotonin from CNS and peripheral tissues. SERT ligands are effective and relatively safe; primary care practitioners often prescribe them. However, they have several side effects and require 2-6 weeks of continuous administration until they act effectively. How they work remains perplexing, contrasting with earlier assumptions that the therapeutic mechanism involves SERT inhibition followed by increased extracellular serotonin levels. This study establishes that two SERT ligands, fluoxetine and escitalopram, enter neurons within minutes, while simultaneously accumulating in many membranes. Such knowledge will motivate future research, hopefully revealing where and how SERT ligands engage their therapeutic target(s).


Asunto(s)
Trastorno Depresivo Mayor , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Fluoxetina/farmacología , Escitalopram , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Retículo Endoplásmico/metabolismo , Citalopram/farmacología , Mamíferos
4.
Nucleic Acids Res ; 50(22): e129, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36189884

RESUMEN

Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and in tissues.


Asunto(s)
Terapia Molecular Dirigida , Dasatinib/farmacología , Sondas de Oligonucleótidos , Análisis por Matrices de Proteínas , Proteínas , Gefitinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Terapia Molecular Dirigida/métodos
5.
Br J Clin Pharmacol ; 88(9): 4121-4133, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35404513

RESUMEN

AIM: Roux-en-Y gastric bypass (RYGB) may influence drug disposition due to surgery-induced gastrointestinal alterations and/or subsequent weight loss. The objective was to compare short- and long-term effects of RYGB and diet on the metabolic ratios of paraxanthine/caffeine (cytochrome P450 [CYP] 1A2 activity), 5-hydroxyomeprazole/omeprazole (CYP2C19 activity) and losartan/losartan carboxylic acid (CYP2C9 activity), and cross-sectionally compare these CYP-activities with normal-to-overweight controls. METHODS: This trial included patients with severe obesity preparing for RYGB (n = 40) or diet-induced (n = 41) weight loss, and controls (n = 18). Both weight loss groups underwent a 3-week low-energy diet (<1200 kcal/day, weeks 0-3) followed by a 6-week very-low-energy diet or RYGB (both <800 kcal/day, weeks 3-9). Follow-up time was 2 years, with four pharmacokinetic investigations. RESULTS: Mean ± SD weight loss from baseline was similar in the RYGB-group (13 ± 2.4%) and the diet group (10.5 ± 3.9%) at week 9, but differed at year 2 (RYGB -30 ± 6.9%, diet -3.1 ± 6.3%). From weeks 0 to 3, mean (95% confidence interval [CI]) CYP2C19 activity similarly increased in both groups (RYGB 43% [16, 55], diet 48% [22, 60]). Mean CYP2C19 activity increased by 30% (2.6, 43) after RYGB (weeks 3-9), but not in the diet-group (between-group difference -0.30 [-0.63, 0.03]). CYP2C19 activity remained elevated in the RYGB group at year 2. Baseline CYP2C19 activity was 2.7-fold higher in controls compared with patients with obesity, whereas no difference was observed in CYP1A2 and CYP2C9 activities. CONCLUSION: Our findings suggest that CYP2C19 activity is lower in patients with obesity and increases following weight loss. This may be clinically relevant for drug dosing. No clinically significant effect on CYP1A2 and CYP2C9 activities was observed.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Restricción Calórica , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9 , Humanos , Obesidad/cirugía , Obesidad Mórbida/cirugía , Pérdida de Peso
6.
Pharm Res ; 39(7): 1599-1613, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35089508

RESUMEN

INTRODUCTION: The organic cation transporter 3 (OCT3, SLC22A3) is ubiquitously expressed and interacts with a wide array of compounds including endogenous molecules, environmental toxins and prescription drugs. Understudied as a determinant of pharmacokinetics and pharmacodynamics, OCT3 has the potential to be a major determinant of drug absorption and disposition and to be a target for drug-drug interactions (DDIs). GOAL: The goal of the current study was to identify prescription drug inhibitors of OCT3. METHODS: We screened a compound library consisting of 2556 prescription drugs, bioactive molecules, and natural products using a high throughput assay in HEK-293 cells stably expressing OCT3. RESULTS: We identified 210 compounds that at 20 µM inhibit 50% or more of OCT3-mediated uptake of 4-Di-1-ASP (2 µM). Of these, nine were predicted to inhibit the transporter at clinically relevant unbound plasma concentrations. A Structure-Activity Relationship (SAR) model included molecular descriptors that could discriminate between inhibitors and non-inhibitors of OCT3 and was used to identify additional OCT3 inhibitors. Proteomics of human brain microvessels (BMVs) indicated that OCT3 is the highest expressed OCT in the human blood-brain barrier (BBB). CONCLUSIONS: This study represents the largest screen to identify prescription drug inhibitors of OCT3. Several are sufficiently potent to inhibit the transporter at therapeutic unbound plasma levels, potentially leading to DDIs or off-target pharmacologic effects.


Asunto(s)
Proteínas de Transporte de Catión Orgánico , Medicamentos bajo Prescripción , Cationes , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores
7.
Eur J Clin Pharmacol ; 78(8): 1289-1299, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35648149

RESUMEN

PURPOSE: Variability in cytochrome P450 3A4 (CYP3A4) metabolism is mainly caused by non-genetic factors, hence providing a need for accurate phenotype biomarkers. Although 4ß-hydroxycholesterol (4ßOHC) is a promising endogenous CYP3A4 biomarker, additional investigations are required to evaluate its ability to predict CYP3A4 activity. This study investigated the correlations between 4ßOHC concentrations and hepatic and intestinal CYP3A4 protein expression and ex vivo microsomal activity in paired liver and jejunum samples, as well as in vivo CYP3A4 phenotyping (midazolam) in patients with a wide body weight range. METHODS: The patients (n = 96; 78 with obesity and 18 normal or overweight individuals) were included from the COCKTAIL-study (NCT02386917). Plasma samples for analysis of 4ßOHC and midazolam concentrations, and liver (n = 56) and jejunal (n = 38) biopsies were obtained. The biopsies for determination of CYP3A4 protein concentration and microsomal activity were obtained during gastric bypass or cholecystectomy. In vivo CYP3A4 phenotyping was performed using semi-simultaneous oral (1.5 mg) and intravenous (1.0 mg) midazolam. RESULTS: 4ßOHC concentrations were positively correlated with hepatic microsomal CYP3A4 activity (ρ = 0.53, p < 0.001), and hepatic CYP3A4 concentrations (ρ = 0.30, p = 0.027), but not with intestinal CYP3A4 concentrations (ρ = 0.18, p = 0.28) or intestinal microsomal CYP3A4 activity (ρ = 0.15, p = 0.53). 4ßOHC concentrations correlated weakly with midazolam absolute bioavailability (ρ = - 0.23, p = 0.027) and apparent oral clearance (ρ = 0.28, p = 0.008), but not with systemic clearance (ρ = - 0.03, p = 0.81). CONCLUSION: These findings suggest that 4ßOHC concentrations reflect hepatic, but not intestinal, CYP3A4 activity. Further studies should investigate the potential value of 4ßOHC as an endogenous biomarker for individual dose requirements of intravenously administered CYP3A4 substrate drugs. TRIAL REGISTRATION: Clinical. TRIALS: gov identifier: NCT02386917.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Biomarcadores , Peso Corporal , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Humanos , Hidroxicolesteroles , Hígado/metabolismo
8.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806468

RESUMEN

The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Ácidos y Sales Biliares/metabolismo , Cromatografía Liquida , Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Humanos , Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/biosíntesis , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/biosíntesis , Simportadores/genética , Simportadores/metabolismo , Espectrometría de Masas en Tándem , Ácido Taurocólico/metabolismo
9.
J Cell Physiol ; 236(8): 5885-5894, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33452735

RESUMEN

Human hepatocytes show marked differences in cell size, gene expression, and function throughout the liver lobules, an arrangement termed liver zonation. However, it is not clear if these zonal size differences, and the associated phenotypic differences, are retained in isolated human hepatocytes, the "gold standard" for in vitro studies of human liver function. Here, we therefore explored size differences among isolated human hepatocytes and investigated whether separation by size can be used to study liver zonation in vitro. We used counterflow centrifugal elutriation to separate cells into different size fractions and analyzed them with label-free quantitative proteomics, which revealed an enrichment of 151 and 758 proteins (out of 5163) in small and large hepatocytes, respectively. Further analysis showed that protein abundances in different hepatocyte size fractions recapitulated the in vivo expression patterns of previously described zonal markers and biological processes. We also found that the expression of zone-specific cytochrome P450 enzymes correlated with their metabolic activity in the different fractions. In summary, our results show that differences in hepatocyte size matches zonal expression patterns, and that our size fractionation approach can be used to study zone-specific liver functions in vitro.


Asunto(s)
Diferenciación Celular/fisiología , Disección , Hepatocitos/metabolismo , Hígado/citología , Sistema Enzimático del Citocromo P-450/metabolismo , Disección/métodos , Expresión Génica/fisiología , Humanos , Hígado/metabolismo , Hígado/cirugía
10.
Mol Pharm ; 18(4): 1792-1805, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33739838

RESUMEN

Human liver microsomes (HLM) and human hepatocytes (HH) are important in vitro systems for studies of intrinsic drug clearance (CLint) in the liver. However, the CLint values are often in disagreement for these two systems. Here, we investigated these differences in a side-by-side comparison of drug metabolism in HLM and HH prepared from 15 matched donors. Protein expression and intracellular unbound drug concentration (Kpuu) effects on the CLint were investigated for five prototypical probe substrates (bupropion-CYP2B6, diclofenac-CYP2C9, omeprazole-CYP2C19, bufuralol-CYP2D6, and midazolam-CYP3A4). The samples were donor-matched to compensate for inter-individual variability but still showed systematic differences in CLint. Global proteomics analysis outlined differences in HLM from HH and homogenates of human liver (HL), indicating variable enrichment of ER-localized cytochrome P450 (CYP) enzymes in the HLM preparation. This suggests that the HLM may not equally and accurately capture metabolic capacity for all CYPs. Scaling CLint with CYP amounts and Kpuu could only partly explain the discordance in absolute values of CLint for the five substrates. Nevertheless, scaling with CYP amounts improved the agreement in rank order for the majority of the substrates. Other factors, such as contribution of additional enzymes and variability in the proportions of active and inactive CYP enzymes in HLM and HH, may have to be considered to avoid the use of empirical scaling factors for prediction of drug metabolism.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/enzimología , Hígado/enzimología , Microsomas Hepáticos/enzimología , Bupropión/farmacocinética , Sistema Enzimático del Citocromo P-450/análisis , Diclofenaco/farmacocinética , Etanolaminas/farmacocinética , Eliminación Hepatobiliar , Humanos , Hígado/citología , Midazolam/farmacocinética , Omeprazol/farmacocinética , Proteoma/análisis , Proteómica
11.
Drug Metab Dispos ; 48(1): 8-17, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31685482

RESUMEN

The liver and small intestine restrict oral bioavailability of drugs and constitute the main sites of pharmacokinetic drug-drug interactions. Hence, detailed data on hepatic and intestinal activities of drug metabolizing enzymes is important for modeling drug disposition and optimizing pharmacotherapy in different patient populations. The aim of this study was to determine the activities of seven cytochrome P450 (P450) enzymes in paired liver and small intestinal samples from patients with obesity. Biopsies were obtained from 20 patients who underwent Roux-en-Y gastric bypass surgery following a 3-week low-energy diet. Individual hepatic and intestinal microsomes were prepared and specific probe substrates in combined incubations were used for determination of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A activities. The activities of CYP2C8, CYP2C9, CYP2D6, and CYP3A were quantified in both human liver microsomes (HLM) and human intestinal microsomes (HIM), while the activities of CYP1A2, CYP2B6, and CYP2C19 were only quantifiable in HLM. Considerable interindividual variability was present in both HLM (9- to 23-fold) and HIM (5- to 55-fold). The median metabolic HLM/HIM ratios varied from 1.5 for CYP3A to 252 for CYP2C8. The activities of CYP2C9 in paired HLM and HIM were positively correlated (r = 0.74, P < 0.001), while no interorgan correlations were found for activities of CYP2C8, CYP2D6, and CYP3A (P > 0.05). Small intestinal CYP3A activities were higher in females compared with males (P < 0.05). Hepatic CYP2B6 activity correlated negatively with body mass index (r = -0.72, P < 0.001). These data may be useful for further in vitro-in vivo predictions of drug disposition in patients with obesity. SIGNIFICANCE STATEMENT: Hepatic and intestinal drug metabolism is the key determinant of oral drug bioavailability. In this study, paired liver and jejunum samples were obtained from 20 patients with obesity undergoing gastric bypass surgery following a 3-week low-energy diet. We determined the hepatic and small intestinal activities of clinically important P450 enzymes and provide detailed enzyme kinetic data relevant for predicting in vivo disposition of P450 substrates in this patient population.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Yeyuno/enzimología , Hígado/enzimología , Microsomas/enzimología , Obesidad/enzimología , Índice de Masa Corporal , Sistema Enzimático del Citocromo P-450/genética , Activación Enzimática , Femenino , Genotipo , Humanos , Técnicas In Vitro , Cinética , Masculino , Microsomas Hepáticos/enzimología , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacología , Especificidad de Órganos , Caracteres Sexuales , Especificidad por Sustrato
12.
Liver Int ; 40(7): 1770-1780, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32243721

RESUMEN

BACKGROUND & AIMS: The human liver functions through a complex interplay between parenchymal and non-parenchymal cells. Mass spectrometry-based proteomic analysis of intact tissue has provided an in-depth view of the human liver proteome. However, the predominance of parenchymal cells (hepatocytes) means that the total tissue proteome mainly reflects hepatocyte expression. Here we therefore set out to analyse the proteomes of the major parenchymal and non-parenchymal cell types in the human liver. METHODS: We applied quantitative label-free proteomic analysis on the major cell types of the human liver: hepatocytes, liver endothelial cells, Kupffer cells and hepatic stellate cells. RESULTS: We identified 9791 proteins, revealing distinct protein expression profiles across cell types, whose in vivo relevance was shown by the presence of cell-type-specific proteins. Analysis of proteins related to the immune system indicated that mechanisms of immune-mediated liver injury include the involvement of several cell types. Furthermore, in-depth investigation of proteins related to the absorption, distribution, metabolism, excretion and toxicity (ADMET) of xenobiotics showed that ADMET-related tasks are not exclusively confined to hepatocytes, and that non-parenchymal cells may contribute to drug transport and metabolism. CONCLUSIONS: Overall, the data we provide constitute a unique resource for exploring the proteomes of the major types of human liver cells, which will facilitate an improved understanding of the human liver in health and disease.


Asunto(s)
Células Endoteliales , Proteómica , Hepatocitos , Humanos , Macrófagos del Hígado , Hígado
13.
Proc Natl Acad Sci U S A ; 114(30): E6231-E6239, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28701380

RESUMEN

Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery.


Asunto(s)
Descubrimiento de Drogas/métodos , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Disponibilidad Biológica , Transporte Biológico , Células HEK293 , Células HL-60 , Humanos , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacocinética
14.
J Proteome Res ; 18(1): 217-224, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30336047

RESUMEN

Quantification of individual proteins is an essential task in understanding biological processes. For example, determination of concentrations of proteins transporting and metabolizing xenobiotics is a prerequisite for drug disposition predictions in humans based on in vitro data. So far, this task has frequently been accomplished by targeted proteomics. This type of analyses requires preparation of stable isotope labeled standards for each protein of interest. The selection of appropriate standard peptides is usually tedious and the number of proteins that can be studied in a single experiment by these approaches is limited. In addition, incomplete digestion of proteins often affects the accuracy of the quantification. To circumvent these constrains in proteomic protein quantification, label- and standard-free approaches, such as "total protein approach" (TPA) have been proposed. Here we directly compare an approach using stable isotope labeled (SIL) standards and TPA for quantification of transporters and enzymes in human liver samples within the same LC-MS/MS runs. We show that TPA is a convenient alternative to SIL-based methods. Optimization of the sample preparation beyond commonly used single tryptic digestion, by adding consecutive cleavage steps, improves accuracy and reproducibility of the TPA method to a level, which is achievable by analysis using stable isotope-labeled standard spiking.


Asunto(s)
Endopeptidasas/metabolismo , Marcaje Isotópico/métodos , Proteómica/métodos , Animales , Cromatografía Liquida , Humanos , Péptidos/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Tripsina/metabolismo
15.
Anal Chem ; 91(9): 5548-5552, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31001971

RESUMEN

Apoptosis is a controlled form of cell death that can be induced by various diseases and exogenous toxicants. Common apoptosis-detection methods rely on fluorescent markers, which necessitate the use of costly reagents and time-consuming labeling procedures. Label-free methods avoid these problems, but often require specialized instruments instead. Here, we utilize apoptotic-cell disintegration to develop a novel label-free detection method based on the quantification of subcellular debris particles in bright-field-microscopy images. Debris counts show strong correlations with fluorescence-based annexin V staining and can be used to study concentration-dependent and temporal apoptosis activation. The method is rapid, low-cost, and easy to apply, as the only experimental step comprises bright-field imaging of culture-media samples followed by automated image processing. The late-stage nature of the debris measurement means that the method can complement other, established apoptosis assays, and its accessibility will allow a wider community of researchers to study apoptotic cell death.


Asunto(s)
Apoptosis , Microscopía , Animales , Perros , Estudios de Factibilidad , Hepatocitos/citología , Humanos , Células de Riñón Canino Madin Darby
16.
Pharm Res ; 36(12): 178, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701258

RESUMEN

PURPOSE: The intracellular fraction of unbound compound (fu,cell) is an important parameter for accurate prediction of drug binding to intracellular targets. fu,cell is the result of a passive distribution process of drug molecules partitioning into cellular structures. Initial observations in our laboratory showed an up to 10-fold difference in the fu,cell of a given drug for different cell types. We hypothesized that these differences could be explained by the phospholipid (PL) composition of the cells, since the PL cell membrane is the major sink of unspecific drug binding. Therefore, we determined the fu,cell of 19 drugs in cell types of different origin. METHOD: The cells were characterized for their total PL content and we used mass spectrometric PL profiling to delineate the impact of each of the four major cellular PL subspecies: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The cell-based experiments were compared to cell-free experiments that used beads covered by PL bilayers consisting of the most abundant PL subspecies. RESULTS: PC was found to give the largest contribution to the drug binding. Improved correlations between the cell-based and cell-free assays were obtained when affinities to all four major PL subspecies were considered. Together, our data indicate that fu,cell is influenced by PL composition of cells. CONCLUSION: We conclude that cellular PL composition varies between cell types and that cell-specific mixtures of PLs can replace cellular assays for determination of fu,cell as a rapid, small-scale assay covering a broad dynamic range. Graphical Abstract.


Asunto(s)
Cafeína/química , Membrana Celular/metabolismo , Citoplasma/metabolismo , Fenazopiridina/química , Fosfolípidos/metabolismo , Disponibilidad Biológica , Transporte Biológico , Línea Celular , Simulación por Computador , Interacciones Farmacológicas , Humanos , Modelos Biológicos
17.
Arch Toxicol ; 93(3): 819-829, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30560367

RESUMEN

Primary human hepatocytes are used in all facets of liver research, from in vitro studies of xenobiotic disposition and toxicity to the clinical management of liver failure. Unfortunately, cellular stress during isolation and cryopreservation causes a highly unpredictable loss of the ability to attach and form cell-matrix and cell-cell interactions. Reasoning that this problem could be mitigated at the post-thawing stage, we applied label-free quantitative global proteomics to analyze differences between attached and non-attached fractions of cryopreserved human hepatocyte batches. Hepatocytes that were unable to attach to a collagen matrix showed many signs of cellular stress, including a glycolytic phenotype and activation of the heat shock response, ultimately leading to apoptosis activation. Further analysis of the activated stress pathways revealed an increase in early apoptosis immediately post-thawing, which suggested the possibility of stress reversal. Therefore, we transiently treated the cells with compounds aimed at decreasing cellular stress via different mechanisms. Brief exposure to the pan-caspase apoptosis inhibitor Z-VAD-FMK restored attachment ability and promoted a differentiated morphology, as well as formation of 3D spheroids. Further, Z-VAD-FMK treatment restored metabolic and transport functions, with maintained sensitivity to hepatotoxic insults. Altogether, this study shows that differentiation and function of suboptimal human hepatocytes can be restored after cryopreservation, thus markedly increasing the availability of these precious cells.


Asunto(s)
Criopreservación/métodos , Hepatocitos , Clorometilcetonas de Aminoácidos , Apoptosis , Inhibidores de Caspasas , Caspasas , Diferenciación Celular , Humanos , Hígado
18.
Drug Metab Dispos ; 46(4): 387-396, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29343608

RESUMEN

The quantification of drug metabolizing enzymes and transporters has recently been revolutionized on the basis of targeted proteomic approaches. Isotope-labeled peptides are used as standards for the quantification of the corresponding proteins in enzymatically fragmented samples. However, hurdles in these approaches are low throughput and tedious sample prefractionation steps prior to mass spectrometry (MS) readout. We have developed an assay platform using sensitive and selective immunoprecipitation coupled with mass spectrometric readout allowing the quantification of proteins directly from whole cell lysates using less than 20,000 cells per analysis. Peptide group-specific antibodies (triple X proteomics antibodies) enable the enrichment of proteotypic peptides sharing a common terminus. These antibodies were employed to establish a MS-based immunoassay panel for the quantification of 14 cytochrome P450 (P450) enzymes and nine transporters. We analyzed the P450 enzyme and transporter levels in genotyped liver tissue homogenates and microsomes, and in samples from a time course induction experiment in human hepatocytes addressing different induction pathways. For the analysis of P450 enzymes and transporters only a minute amount of sample is required and no prefractionation is necessary, thus the assay platform bears the potential to bridge cell culture model experiments and results from whole organ tissue studies.


Asunto(s)
Transporte Biológico/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Inmunoensayo/métodos , Espectrometría de Masas/métodos , Proteínas de Transporte de Membrana/metabolismo , Línea Celular Tumoral , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Péptidos/metabolismo , Proteómica/métodos
19.
Nat Chem Biol ; 12(12): 1065-1074, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27748751

RESUMEN

Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.


Asunto(s)
Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacocinética , Células CACO-2 , Humanos , Estructura Molecular , Permeabilidad , Estereoisomerismo , Relación Estructura-Actividad
20.
Mol Pharm ; 15(6): 2224-2233, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29709195

RESUMEN

Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( Fic) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower Fic. The induction of NL did not further increase drug binding but led to altered Fic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.


Asunto(s)
Adipocitos/metabolismo , Lisosomas/metabolismo , Farmacocinética , Fosfolípidos/metabolismo , Células 3T3 , Animales , Disponibilidad Biológica , Citoplasma/metabolismo , Concentración de Iones de Hidrógeno , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA