Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Clin Microbiol ; 61(4): e0163422, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37010411

RESUMEN

Offering patients with tuberculosis (TB) an optimal and timely treatment regimen depends on the rapid detection of Mycobacterium tuberculosis (Mtb) drug resistance from clinical samples. Finding Low Abundance Sequences by Hybridization (FLASH) is a technique that harnesses the efficiency, specificity, and flexibility of the Cas9 enzyme to enrich targeted sequences. Here, we used FLASH to amplify 52 candidate genes probably associated with resistance to first- and second-line drugs in the Mtb reference strain (H37Rv), then detect drug resistance mutations in cultured Mtb isolates, and in sputum samples. 92% of H37Rv reads mapped to Mtb targets, with 97.8% of target regions covered at a depth ≥ 10X. Among cultured isolates, FLASH-TB detected the same 17 drug resistance mutations as whole genome sequencing (WGS) did, but with much greater depth. Among the 16 sputum samples, FLASH-TB increased recovery of Mtb DNA compared with WGS (from 1.4% [IQR 0.5-7.5] to 33% [IQR 4.6-66.3]) and average depth reads of targets (from 6.3 [IQR 3.8-10.5] to 1991 [IQR 254.4-3623.7]). FLASH-TB identified Mtb complex in all 16 samples based on IS1081 and IS6110 copies. Drug resistance predictions for 15/16 (93.7%) clinical samples were highly concordant with phenotypic DST for isoniazid, rifampicin, amikacin, and kanamycin [15/15 (100%)], ethambutol [12/15 (80%)] and moxifloxacin [14/15 (93.3%)]. These results highlighted the potential of FLASH-TB for detecting Mtb drug resistance from sputum samples.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis/tratamiento farmacológico , Mycobacterium tuberculosis/genética , Pruebas de Sensibilidad Microbiana
2.
BMC Infect Dis ; 23(1): 79, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750921

RESUMEN

BACKGROUND: Compared to the abundance of clinical and genomic information available on patients hospitalised with COVID-19 disease from high-income countries, there is a paucity of data from low-income countries. Our aim was to explore the relationship between viral lineage and patient outcome. METHODS: We enrolled a prospective observational cohort of adult patients hospitalised with PCR-confirmed COVID-19 disease between July 2020 and March 2022 from Blantyre, Malawi, covering four waves of SARS-CoV-2 infections. Clinical and diagnostic data were collected using an adapted ISARIC clinical characterization protocol for COVID-19. SARS-CoV-2 isolates were sequenced using the MinION™ in Blantyre. RESULTS: We enrolled 314 patients, good quality sequencing data was available for 55 patients. The sequencing data showed that 8 of 11 participants recruited in wave one had B.1 infections, 6/6 in wave two had Beta, 25/26 in wave three had Delta and 11/12 in wave four had Omicron. Patients infected during the Delta and Omicron waves reported fewer underlying chronic conditions and a shorter time to presentation. Significantly fewer patients required oxygen (22.7% [17/75] vs. 58.6% [140/239], p < 0.001) and steroids (38.7% [29/75] vs. 70.3% [167/239], p < 0.001) in the Omicron wave compared with the other waves. Multivariable logistic-regression demonstrated a trend toward increased mortality in the Delta wave (OR 4.99 [95% CI 1.0-25.0 p = 0.05) compared to the first wave of infection. CONCLUSIONS: Our data show that each wave of patients hospitalised with SARS-CoV-2 was infected with a distinct viral variant. The clinical data suggests that patients with severe COVID-19 disease were more likely to die during the Delta wave.


Asunto(s)
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Malaui , Estudios de Cohortes , Exactitud de los Datos
3.
Clin Infect Dis ; 71(10): e532-e539, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32166306

RESUMEN

BACKGROUND: Meta-analysis of patients with isoniazid-resistant tuberculosis (TB) given standard first-line anti-TB treatment indicated an increased risk of multidrug-resistant TB (MDR-TB) emerging (8%), compared to drug-sensitive TB (0.3%). Here we use whole genome sequencing (WGS) to investigate whether treatment of patients with preexisting isoniazid-resistant disease with first-line anti-TB therapy risks selecting for rifampicin resistance, and hence MDR-TB. METHODS: Patients with isoniazid-resistant pulmonary TB were recruited and followed up for 24 months. Drug susceptibility testing was performed by microscopic observation drug susceptibility assay, mycobacterial growth indicator tube, and by WGS on isolates at first presentation and in the case of re-presentation. Where MDR-TB was diagnosed, WGS was used to determine the genomic relatedness between initial and subsequent isolates. De novo emergence of MDR-TB was assumed where the genomic distance was 5 or fewer single-nucleotide polymorphisms (SNPs), whereas reinfection with a different MDR-TB strain was assumed where the distance was 10 or more SNPs. RESULTS: Two hundred thirty-nine patients with isoniazid-resistant pulmonary TB were recruited. Fourteen (14/239 [5.9%]) patients were diagnosed with a second episode of TB that was multidrug resistant. Six (6/239 [2.5%]) were identified as having evolved MDR-TB de novo and 6 as having been reinfected with a different strain. In 2 cases, the genomic distance was between 5 and 10 SNPs and therefore indeterminate. CONCLUSIONS: In isoniazid-resistant TB, de novo emergence and reinfection of MDR-TB strains equally contributed to MDR development. Early diagnosis and optimal treatment of isoniazid-resistant TB are urgently needed to avert the de novo emergence of MDR-TB during treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Isoniazida/farmacología , Estudios Longitudinales , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Secuenciación Completa del Genoma
4.
Med Mycol ; 58(8): 1149-1161, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32196550

RESUMEN

We previously observed a substantial burden of cryptococcal meningitis in Vietnam atypically arising in individuals who are uninfected with human immunodeficiency virus (HIV). This disease was associated with a single genotype of Cryptococcus neoformans (sequence type [ST]5), which was significantly less common in HIV-infected individuals. Aiming to compare the phenotypic characteristics of ST5 and non-ST5 C. neoformans, we selected 30 representative Vietnamese isolates and compared their in vitro pathogenic potential and in vivo virulence. ST5 and non-ST5 organisms exhibited comparable characteristics with respect to in vitro virulence markers including melanin production, replication at 37°C, and growth in cerebrospinal fluid. However, the ST5 isolates had significantly increased variability in cellular and capsular sizing compared with non-ST5 organisms (P < .001). Counterintuitively, mice infected with ST5 isolates had significantly longer survival with lower fungal burdens at day 7 than non-ST5 isolates. Notably, ST5 isolates induced significantly greater initial inflammatory responses than non-ST5 strains, measured by TNF-α concentrations (P < .001). Despite being generally less virulent in the mouse model, we hypothesize that the significant within strain variation seen in ST5 isolates in the tested phenotypes may represent an evolutionary advantage enabling adaptation to novel niches including apparently immunocompetent human hosts.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Cryptococcus neoformans/patogenicidad , Meningitis Criptocócica/microbiología , Infecciones Oportunistas Relacionadas con el SIDA/patología , Animales , Recuento de Colonia Microbiana , Cryptococcus neoformans/genética , Citocinas/metabolismo , Femenino , Cápsulas Fúngicas/patología , Genotipo , Humanos , Inmunocompetencia , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Masculino , Meningitis Criptocócica/patología , Ratones , Fenotipo , Vietnam/epidemiología , Virulencia
5.
Med Mycol ; 57(5): 557-565, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339200

RESUMEN

Cryptococcosis causes approximately 180 000 deaths each year in patients with human immunodeficiency virus (HIV). Patients with other forms of immunosuppression are also at risk, and disease is increasingly recognized in apparently immunocompetent individuals. Cryptococcus neoformans var. grubii, responsible for the majority of cases, is distributed globally. We used the consensus ISHAM Multilocus sequence typing (MLST) scheme to define the population structure of clinical C. neoformans var. grubii isolates from Laos (n = 81), which we placed into the global context using published MLST data from other countries (total N = 1047), including a reanalysis of 136 Vietnamese isolates previously reported. We observed a phylogeographical relationship in which the Laotian population was similar to its neighbor Thailand, being dominated (83%) by Sequence Types (ST) 4 and 6. This phylogeographical structure changed moving eastwards, with Vietnam's population consisting of an admixture of isolates dominated by the ST4/ST6 (35%) and ST5 (48%) lineages. The ST5 lineage is the predominant ST reported from China and East Asia, where it accounts for >90% of isolates. Analysis of genetic distance (Fst) between different populations of C. neoformans var. grubii supports this intermediate structure of the Vietnamese population. The pathogen and host diversity reported from Vietnam provide the strongest epidemiological evidence of the association between ST5 and HIV-uninfected patients. Regional anthropological genetic distances suggest diversity in the C. neoformans var. grubii population across Southeast Asia is driven by ecological rather than human host factors. Where the ST5 lineage is present, disease in HIV-uninfected patients is to be expected.

6.
J Antimicrob Chemother ; 73(2): 365-372, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216342

RESUMEN

Objectives: Surveillance of antimicrobial resistance (AMR) in Salmonella enterica serovars Typhi and Paratyphi is essential to provide an evidence base for empirical treatment protocols and to monitor emerging AMR. We sought to compare phenotypic and WGS-based genotypic methods for the detection of AMR in Salmonella Typhi and Salmonella Paratyphi. Methods: WGS data from 603 isolates of Salmonella Typhi (n = 332) and Salmonella Paratyphi (n = 271) were mapped to genes or chromosomal mutations known to be associated with phenotypic AMR and compared with phenotypic susceptibility data interpreted using breakpoints recommended by EUCAST. Results: There were two (0.03%) discordant interpretations out of a possible 6030 isolate/antimicrobial class combinations. MDR (resistant to three or more classes of antimicrobial) was detected in 83/332 (25.0%) Salmonella Typhi isolates, but was not detected in Salmonella Paratyphi. Thirty-six (10.8%) isolates of Salmonella Typhi were resistant to ciprofloxacin (MIC >0.5 mg/L), with 33 (9.9%) of 332 exhibiting mutations in gyrA and parC, and 244 (73.5%) isolates had reduced susceptibility to ciprofloxacin (MIC 0.06-0.25 mg/L). In comparison, 209/227 (92.1%) isolates of Salmonella Paratyphi A exhibited resistance to ciprofloxacin (MIC >0.5 mg/L). No resistance to azithromycin or the third-generation cephalosporins was detected. Conclusions: WGS data provided a robust and informative approach for monitoring MDR and emerging resistance to ciprofloxacin in Salmonella Typhi and Salmonella Paratyphi. Phenotypic antimicrobial susceptibility testing continues to be performed to guide targeted individual patient treatment, but inferred AMR profiles from WGS data may be used for surveillance and to guide empirical therapy.


Asunto(s)
Farmacorresistencia Bacteriana , Genotipo , Salmonella paratyphi A/efectos de los fármacos , Salmonella paratyphi A/genética , Salmonella typhi/efectos de los fármacos , Antibacterianos/farmacología , Femenino , Genes Bacterianos , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Mutación , Fiebre Paratifoidea/microbiología , Salmonella paratyphi A/aislamiento & purificación , Salmonella typhi/aislamiento & purificación , Fiebre Tifoidea/microbiología , Secuenciación Completa del Genoma
7.
Food Microbiol ; 71: 39-45, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29366467

RESUMEN

The unprecedented level of bacterial strain discrimination provided by whole genome sequencing (WGS) presents new challenges with respect to the utility and interpretation of the data. Whole genome sequences from 1445 isolates of Salmonella belonging to the most commonly identified serotypes in England and Wales isolated between April and August 2014 were analysed. Single linkage single nucleotide polymorphism thresholds at the 10, 5 and 0 level were explored for evidence of epidemiological links between clustered cases. Analysis of the WGS data organised 566 of the 1445 isolates into 32 clusters of five or more. A statistically significant epidemiological link was identified for 17 clusters. The clusters were associated with foreign travel (n = 8), consumption of Chinese takeaways (n = 4), chicken eaten at home (n = 2), and one each of the following; eating out, contact with another case in the home and contact with reptiles. In the same time frame, one cluster was detected using traditional outbreak detection methods. WGS can be used for the highly specific and highly sensitive detection of biologically related isolates when epidemiological links are obscured. Improvements in the collection of detailed, standardised exposure information would enhance cluster investigations.


Asunto(s)
Genoma Bacteriano , Infecciones por Salmonella/microbiología , Salmonella/aislamiento & purificación , Adolescente , Adulto , Niño , Preescolar , ADN Bacteriano/genética , Brotes de Enfermedades , Inglaterra/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple , Salmonella/clasificación , Salmonella/genética , Infecciones por Salmonella/epidemiología , Gales/epidemiología , Secuenciación Completa del Genoma , Adulto Joven
8.
Food Microbiol ; 71: 32-38, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29366466

RESUMEN

Analysis of whole genome sequencing data uncovered a previously undetected outbreak of Salmonella Enteritidis that had been on-going for four years. Cases were resident in all countries of the United Kingdom and 40% of the cases were aged less than 11 years old. Initial investigations revealed that 30% of cases reported exposure to pet snakes. A case-control study was designed to test the hypothesis that exposure to reptiles or their feed were risk factors. A robust case-definition, based on the single nucleotide polymorphism (SNP) profile, increased the power of the analytical study. Following univariable and multivariable analysis, exposure to snakes was the only variable independently associated with infection (Odds ratio 810 95% CI (85-7715) p < 0.001). Isolates of S. Enteritidis belonging to the outbreak profile were recovered from reptile feeder mice sampled at the retail and wholesale level. Control measures included improved public health messaging at point of sale, press releases and engagement with public health and veterinary counterparts across Europe. Mice destined to be fed to reptiles are not regarded as pet food and are not routinely tested for pathogenic bacteria. Routine microbiological testing to ensure feeder mice are free from Salmonella is recommended.


Asunto(s)
Ratones/microbiología , Infecciones por Salmonella/microbiología , Salmonella enteritidis/aislamiento & purificación , Serpientes/microbiología , Zoonosis/microbiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Brotes de Enfermedades , Conducta Alimentaria , Femenino , Genoma Bacteriano , Humanos , Lactante , Masculino , Persona de Mediana Edad , Filogenia , Ratas/microbiología , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/transmisión , Salmonella enteritidis/clasificación , Salmonella enteritidis/genética , Salmonella enteritidis/fisiología , Serpientes/fisiología , Reino Unido/epidemiología , Secuenciación Completa del Genoma , Adulto Joven , Zoonosis/epidemiología , Zoonosis/transmisión
9.
J Clin Microbiol ; 54(6): 1456-1461, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26984974

RESUMEN

Shigella flexneri can be phenotypically serotyped using antisera raised to type-specific somatic antigens and group factor antigens and genotypically serotyped using PCR targeting O-antigen synthesis or modification genes. The aim of this study was to evaluate a real-time PCR for serotyping S. flexneri and to use whole-genome sequencing (WGS) to investigate the phenotypic and genotypic serotype identifications. Of the 244 cultures tested retrospectively, 226 (92.6%) had concordant results between phenotypic serotyping and PCR. Seventy of the 244 isolates (including 15 of the 18 isolates where a serotype-PCR mismatch was identified) were whole-genome sequenced, and the serotype was derived from the genome. Discrepant results between the phenotypic and genotypic tests were attributed to insertions/deletions or point mutations identified in O-antigen synthesis or modification genes, rendering them dysfunctional; inconclusive serotyping results due to nonspecific cross-reactions; or novel genotypes. Phylogenetic analysis of the WGS data indicated that the serotype, regardless of whether it was phenotypically or genotypically determined, was a weak predictor of phylogenetic relationships between strains of S. flexneri WGS data provided both genome-derived serotyping, thus supporting backward compatibility with historical data and facilitating data exchange in the community, and more robust and discriminatory typing at the single-nucleotide-polymorphism level.


Asunto(s)
Técnicas de Genotipaje/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Serotipificación/métodos , Shigella flexneri/clasificación , Shigella flexneri/genética , Genoma Bacteriano , Filogenia , Estudios Prospectivos , Estudios Retrospectivos , Análisis de Secuencia de ADN
10.
Clin Infect Dis ; 61(3): 305-12, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25888672

RESUMEN

BACKGROUND: National surveillance of gastrointestinal pathogens, such as Shiga toxin-producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation. METHODS: We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012. The genetic distance between each isolate, as estimated by WGS, was calculated and phylogenetic methods were used to place strains in an evolutionary context. RESULTS: Estimates of linked clusters representing STEC O157 outbreaks in England and Wales increased by 2-fold when WGS was used instead of traditional typing techniques. The previously unidentified clusters were often widely geographically distributed and small in size. Phylogenetic analysis facilitated identification of temporally distinct cases sharing common exposures and delineating those that shared epidemiological and temporal links. Comparison with multi locus variable number tandem repeat analysis (MLVA) showed that although MLVA is as sensitive as WGS, WGS provides a more timely resolution to outbreak clustering. CONCLUSIONS: WGS has come of age as a molecular typing tool to inform national surveillance of STEC O157; it can be used in real time to provide the highest strain-level resolution for outbreak investigation. WGS allows linked cases to be identified with unprecedented specificity and sensitivity that will facilitate targeted and appropriate public health investigations.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Genoma Bacteriano/genética , Vigilancia en Salud Pública , Escherichia coli Shiga-Toxigénica/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , Brotes de Enfermedades , Humanos , Filogenia , Estudios Retrospectivos , Análisis de Secuencia de ADN , Escherichia coli Shiga-Toxigénica/clasificación
11.
Lancet Microbe ; 5(3): e226-e234, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38387472

RESUMEN

BACKGROUND: Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. METHODS: We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. FINDINGS: From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8-7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4-10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. INTERPRETATION: We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, and National Institute for Health and Care Research (UK).


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Humanos , Masculino , Femenino , Niño , Salmonella typhi/genética , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/epidemiología , Malaui/epidemiología , Filogenia
12.
Microlife ; 5: uqae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623411

RESUMEN

Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterized S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineages 2.2 and 2.3, respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineages 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.

13.
Open Forum Infect Dis ; 10(3): ofad086, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36910696

RESUMEN

Invasive nontyphoidal Salmonella (iNTS) disease is a clinical condition distinct from Salmonella gastroenteritis. With an overall case-fatality rate of 14.5%, iNTS remains a major cause of morbidity and mortality, particularly in sub-Saharan Africa. However, the sources of infections that lead to cases of iNTS remain unclear. Broadly, there are 2 hypotheses as to the source of infections: (i) transmission from a zoonotic reservoir, similar to other nontyphoidal salmonelloses; or (ii) person-to-person transmission. Here we review several recent studies that have asked, "What is the source of infections causing invasive nontyphoidal Salmonella disease?" Two studies reported isolates in the stool of household members of iNTS cases that were very closely related (<3 single-nucleotide polymorphisms) to the iNTS case isolates; this is consistent with the hypothesis of person-to-person transmission, but infection from a common source (eg, a foodstuff) cannot be excluded. On the other hand, thorough investigations of the domestic environment of iNTS cases and the food pathway found only a single iNTS-associated Salmonella Enteritidis isolate. Therefore, we recommend that future studies test the hypothesis that iNTS is transmitted between people within the domestic environment. Further studies of food and water pathways are also warranted.

14.
Microb Genom ; 9(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729036

RESUMEN

Molecular and genomic studies have revealed that Mycobacterium tuberculosis Lineage 4 (L4, Euro-American lineage) emerged in Europe before becoming distributed around the globe by trade routes, colonial migration and other historical connections. Although L4 accounts for tens or hundreds of thousands of tuberculosis (TB) cases in multiple Southeast Asian countries, phylogeographical studies have either focused on a single country or just included Southeast Asia as part of a global analysis. Therefore, we interrogated public genomic data to investigate the historical patterns underlying the distribution of L4 in Southeast Asia and surrounding countries. We downloaded 6037 genomes associated with 29 published studies, focusing on global analyses of L4 and Asian studies of M. tuberculosis. We identified 2256 L4 genomes including 968 from Asia. We show that 81 % of L4 in Thailand, 51 % of L4 in Vietnam and 9 % of L4 in Indonesia belong to sub-lineages of L4 that are rarely seen outside East and Southeast Asia (L4.2.2, L4.4.2 and L4.5). These sub-lineages have spread between East and Southeast Asian countries, with no recent European ancestor. Although there is considerable uncertainty about the exact direction and order of intra-Asian M. tuberculosis dispersal, due to differing sampling frames between countries, our analysis suggests that China may be the intermediate location between Europe and Southeast Asia for two of the three predominantly East and Southeast Asian L4 sub-lineages (L4.2.2 and L4.5). This new perspective on L4 in Southeast Asia raises the possibility of investigating host population-specific evolution and highlights the need for more structured sampling from Southeast Asian countries to provide more certainty of the historical and current routes of dispersal.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Asia Sudoriental/epidemiología , Filogeografía , Tuberculosis/epidemiología , Tuberculosis/microbiología , Tailandia
15.
PLOS Glob Public Health ; 3(3): e0001575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963090

RESUMEN

The SARS-CoV-2 Omicron variant has resulted in a high number of cases, but a relatively low incidence of severe disease and deaths, compared to the pre-Omicron variants. Therefore, we assessed the differences in symptom prevalence between Omicron and pre-Omicron infections in a sub-Saharan African population. We collected data from outpatients presenting at two primary healthcare facilities in Blantyre, Malawi, from November 2020 to March 2022. Eligible participants were aged >1month old, with signs suggestive of COVID-19, and those not suspected of COVID-19, from whom we collected nasopharyngeal swabs for SARS-CoV-2 PCR testing, and sequenced positive samples to identify infecting-variants. In addition, we calculated the risk of presenting with a given symptom in individuals testing SARS-CoV-2 PCR positive before and during the Omicron variant-dominated period. Among 5176 participants, 6.4% were under 5, and 77% were aged 18 to 50 years. SARS-CoV-2 infection prevalence peaked in January 2021 (Beta), July 2021 (Delta), and December 2021 (Omicron). We found that cough (risk ratio (RR), 1.50; 95% confidence interval (CI), 1.00 to 2.30), fatigue (RR 2.27; 95% CI, 1.29 to 3.86) and headache (RR 1.64; 95% CI, 1.15 to 2.34) were associated with a high risk of SARS-CoV-2 infection during the pre-Omicron period. In comparison, only headache (RR 1.41; 95% CI, 1.07 to 1.86) did associate with a high risk of SARS-CoV-2 infection during the Omicron-dominated period. In conclusion, clinical symptoms associated with Omicron infection differed from prior variants and were harder to identify clinically with current symptom guidelines. Our findings encourage regular review of case definitions and testing policies to ensure case ascertainment.

16.
Nat Commun ; 14(1): 7883, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036496

RESUMEN

The COVID-19 pandemic has profoundly impacted health systems globally and robust surveillance has been critical for pandemic control, however not all countries can currently sustain community pathogen surveillance programs. Wastewater surveillance has proven valuable in high-income settings, but less is known about the utility of water surveillance of pathogens in low-income countries. Here we show how wastewater surveillance of SAR-CoV-2 can be used to identify temporal changes and help determine circulating variants quickly. In Malawi, a country with limited community-based COVID-19 testing capacity, we explore the utility of rivers and wastewater for SARS-CoV-2 surveillance. From May 2020-May 2022, we collect water from up to 112 river or defunct wastewater treatment plant sites, detecting SARS-CoV-2 in 8.3% of samples. Peak SARS-CoV-2 detection in water samples predate peaks in clinical cases. Sequencing of water samples identified the Beta, Delta, and Omicron variants, with Delta and Omicron detected well in advance of detection in patients. Our work highlights how wastewater can be used to detect emerging waves, identify variants of concern, and provide an early warning system in settings with no formal sewage systems.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Aguas del Alcantarillado , SARS-CoV-2 , Prueba de COVID-19 , Pandemias , Ríos , COVID-19/diagnóstico , COVID-19/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales , Agua
17.
Elife ; 122023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697804

RESUMEN

Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. Funding: No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).


Salmonella Typhi (Typhi) is a type of bacteria that causes typhoid fever. More than 110,000 people die from this disease each year, predominantly in areas of sub-Saharan Africa and South Asia with limited access to safe water and sanitation. Clinicians use antibiotics to treat typhoid fever, but scientists worry that the spread of antimicrobial-resistant Typhi could render the drugs ineffective, leading to increased typhoid fever mortality. The World Health Organization has prequalified two vaccines that are highly effective in preventing typhoid fever and may also help limit the emergence and spread of resistant Typhi. In low resource settings, public health officials must make difficult trade-off decisions about which new vaccines to introduce into already crowded immunization schedules. Understanding the local burden of antimicrobial-resistant Typhi and how it is spreading could help inform their actions. The Global Typhoid Genomics Consortium analyzed 13,000 Typhi genomes from 110 countries to provide a global overview of genetic diversity and antimicrobial-resistant patterns. The analysis showed great genetic diversity of the different strains between countries and regions. For example, the H58 Typhi variant, which is often drug-resistant, has spread rapidly through Asia and Eastern and Southern Africa, but is less common in other regions. However, distinct strains of other drug-resistant Typhi have emerged in other parts of the world. Resistance to the antibiotic ciprofloxacin was widespread and accounted for over 85% of cases in South Africa. Around 70% of Typhi from Pakistan were extensively drug-resistant in 2020, but these hard-to-treat variants have not yet become established elsewhere. Variants that are resistant to both ciprofloxacin and ceftriaxone have been identified, and azithromycin resistance has also appeared in several different variants across South Asia. The Consortium's analyses provide valuable insights into the global distribution and transmission patterns of drug-resistant Typhi. Limited genetic data were available fromseveral regions, but data from travel-associated cases helped fill some regional gaps. These findings may help serve as a starting point for collective sharing and analyses of genetic data to inform local public health action. Funders need to provide ongoing supportto help fill global surveillance data gaps.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Humanos , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Antibacterianos/farmacología , Viaje , Farmacorresistencia Bacteriana/genética , Ciprofloxacina
18.
PLoS Negl Trop Dis ; 16(12): e0010982, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508466

RESUMEN

BACKGROUND: Invasive Salmonella infections cause significant morbidity and mortality in Sub-Saharan Africa. However, the routes of transmission are uncertain. We conducted a case-control study of index-case and geographically-matched control households in Blantyre, Malawi, sampling Salmonella isolates from index cases, healthy people, animals, and the household environment. METHODOLOGY: Sixty index cases of human invasive Salmonella infection were recruited (March 2015-Oct 2016). Twenty-eight invasive Non-Typhoidal Salmonella (iNTS) disease and 32 typhoid patients consented to household sampling. Each index-case household was geographically matched to a control household. Extensive microbiological sampling included stool sampling from healthy household members, stool or rectal swabs from household-associated animals and boot-sock sampling of the household environment. FINDINGS: 1203 samples from 120 households, yielded 43 non-Typhoidal Salmonella (NTS) isolates from 25 households (overall sample positivity 3.6%). In the 28 iNTS patients, disease was caused by 3 STs of Salmonella Typhimurium, mainly ST313. In contrast, the isolates from households spanned 15 sequence types (STs). Two S. Typhimurium isolates from index cases closely matched isolates from their respective asymptomatic household members (2 and 3 SNP differences respectively). Despite the recovery of a diverse range of NTS, there was no overlap between the STs causing iNTS disease with any environmental or animal isolates. CONCLUSIONS: The finding of NTS strains from index cases that matched household members, coupled with lack of related animal or environmental isolates, supports a hypothesis of human to human transmission of iNTS infections in the household. The breadth of NTS strains found in animals and the household environment demonstrated the robustness of NTS sampling and culture methodology, and suggests a diverse ecology of Salmonella in this setting. Healthy typhoid (S. Typhi) carrier state was not detected. The lack of S. Typhi isolates from the household environment suggests that further methodological development is needed to culture S. Typhi from the environment.


Asunto(s)
Infecciones por Salmonella , Fiebre Tifoidea , Animales , Humanos , Malaui/epidemiología , Estudios de Casos y Controles , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Fiebre Tifoidea/epidemiología , Salmonella typhi
19.
medRxiv ; 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35860218

RESUMEN

Background: Compared to the abundance of clinical and genomic information available on patients hospitalised with COVID-19 disease from high-income countries, there is a paucity of data from low-income countries. Our aim was to explore the relationship between viral lineage and patient outcome. Methods: We enrolled a prospective observational cohort of adult patients hospitalised with PCR-confirmed COVID-19 disease between July 2020 and March 2022 from Blantyre, Malawi, covering four waves of SARS-CoV-2 infections. Clinical and diagnostic data were collected using an adapted ISARIC clinical characterization protocol for COVID-19. SARS-CoV-2 isolates were sequenced using the MinIONâ"¢ in Blantyre. Results: We enrolled 314 patients, good quality sequencing data was available for 55 patients. The sequencing data showed that 8 of 11 participants recruited in wave one had B.1 infections, 6/6 in wave two had Beta, 25/26 in wave three had Delta and 11/12 in wave four had Omicron. Patients infected during the Delta and Omicron waves reported fewer underlying chronic conditions and a shorter time to presentation. Significantly fewer patients required oxygen (22.7% [17/75] vs. 58.6% [140/239], p<0.001) and steroids (38.7% [29/75] vs. 70.3% [167/239], p<0.001) in the Omicron wave compared with the other waves. Multivariable logistic-regression demonstrated a trend toward increased mortality in the Delta wave (OR 4.99 [95% CI 1.0-25.0 p=0.05) compared to the first wave of infection. Conclusions: Our data show that each wave of patients hospitalised with SARS-CoV-2 was infected with a distinct viral variant. The clinical data suggests that patients with severe COVID-19 disease were more likely to die during the Delta wave. Summary: We used genome sequencing to identify the variants of SARS-CoV-2 causing disease in Malawi, and found that each of the four waves was caused by a distinct variant. Clinical investigation suggested that the Delta wave had the highest mortality.

20.
PLoS Negl Trop Dis ; 13(9): e0007620, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513580

RESUMEN

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever, a systemic human infection with a burden exceeding 20 million cases each year that occurs disproportionately among children in low and middle income countries. Antimicrobial therapy is the mainstay for treatment, but resistance to multiple agents is common. Here we report genotypes and antimicrobial resistance (AMR) determinants detected from routine whole-genome sequencing (WGS) of 533 S. Typhi isolates referred to Public Health England between April 2014 and March 2017, 488 (92%) of which had accompanying patient travel information obtained via an enhanced surveillance questionnaire. The majority of cases involved S. Typhi 4.3.1 (H58) linked with travel to South Asia (59%). Travel to East and West Africa were associated with genotypes 4.3.1 and 3.3.1, respectively. Point mutations in the quinolone resistance determining region (QRDR), associated with reduced susceptibility to fluoroquinolones, were very common (85% of all cases) but the frequency varied significantly by region of travel: 95% in South Asia, 43% in East Africa, 27% in West Africa. QRDR triple mutants, resistant to ciprofloxacin, were restricted to 4.3.1 lineage II and associated with travel to India, accounting for 23% of cases reporting travel to the country. Overall 24% of isolates were MDR, however the frequency varied significantly by region and country of travel: 27% in West Africa, 52% in East Africa, 55% in Pakistan, 24% in Bangladesh, 3% in India. MDR determinants were plasmid-borne (IncHI1 PST2 plasmids) in S. Typhi 3.1.1 linked to West Africa, but in all other regions MDR was chromosomally integrated in 4.3.1 lineage I. We propose that routine WGS data from travel-associated cases in industrialised countries could serve as informal sentinel AMR genomic surveillance data for countries where WGS is not available or routinely performed.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Quinolonas/farmacología , Encuestas y Cuestionarios , Enfermedad Relacionada con los Viajes , Fiebre Tifoidea/microbiología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA